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ABSTRACT  

Motor speed control requires motor speed data as feedback of control actions. Motor speed data is usually 
obtained from the rotation speed sensor. This paper proposes the rotor speed observer for permanent magnet 
synchronous motor (PMSM) to obtain motor speed data based on back emf voltage. This method more 
economical without a rotation speed sensor. The rotor speed observer is designed by using the Model Reference 
Adapative System (MRAS) method with Least Squares Support Vector Machine Regression (LSSVMR) algorithm 
for adaptation mechanism. The proposed rotor speed observer is validated with varying motor speeds. The 
simualtion results show that the proposed MRAS observer by using LSSVMR algorithm as adaptation 
mechanism has successfully estimated the rotation speed of the PMSM based on the back emf motor voltage. 
It can be seen from the maximum error of  tmotor speed, ie only 3.7 rpm at transient conditions and close to 
zero at steady state. 
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INTRODUCTION  

Permanent magnet synchronous motor 
(PMSM) is one type of electric motor that is widely 
used to drive various types of machinery in the 
industry. This is because PMSM has many advantages 
compared to other types of motors, such as having 
high power density, high performance, high 
efficiency, easy to control and smaller size compared 
to other motor types for the same power [1]. The 
speed of the motor must be controlled according to 
the required engine speed. PMSM rotation speed 
control requires speed data and rotor position for the 
system of rotation speed control. The rotation speed 
and rotor position data are usually obtained from the 
rotor speed sensor. Therefore, in designing a PMSM 
rotation speed control system an additional cost is 
required for the procurement of a speed sensor. To 
reduce the cost of manufacturing a control system, a 
motor speed control system has been developed 
without a rotor speed sensor. This can be done by 
identifying the PMSM rotation speed based on other 
parameters, such as voltage, flux and stator current, 
also known as motor speed observer [2]. Several 
rotation speed observer methods have been 

developed for PMSM, such as kalman filter observer 
[3], flux observer and Model Reference Adaptive 
System (MRAS) observer [4] [5]. 

This paper proposes the MRAS observer to 
identify both PMSM speed and rotor position based 
on back emf voltage of motor. The advantages of 
MRAS obsrver are less complex,  more effective than 
another observer methods and easier to implement 
[5]. MRAS observer consists of adaptive models, 
reference models and adaptation mechanisms [4]. 
The adaptation mechanism of the MRAS observer is 
usually implemented with various control methods, 
such as PI control, sliding mode and intelligent 
control system.  

Several artificial intelligence algorithms that 
have been implemented for the adaptation 
mechanism of MRAS observer are fuzzy logic and 
neural network. In this paper, The adaptation 
mechanism of the MRAS obsever is proposed by 
using the Least Squares Support Vector Machine 
Regression (LSSVMR) method. LSSVMR is one type of 
machine learning with supervised training [6]. 
LSSVMR was chosen because it is global optimal in 
training data [7] - [9], so that it can increase validity 
and accelerate the work of the LSSVMR algorithm in 
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identifying PMSM speed and rotor position based on 
the back emf voltage parameters. 

 

METHOD  

PMSM speed observer is proposed using MRS 
observer based on LSSVMR algorithm. In this 
method, the rotation speed and the rotor position of 
the PMSM are obtained by comparing the motor 
reference model with the adaptive model. The PMSM 
reference model is obtained from the actual 
parameters, while the adaptive model is obtained 
from the estimation parameter. LSSVMR is used as an 
adaptation mechanism between the adaptive model 
of PMSM and the reference model. The proposed 
MRAS observer was validated through simulations 
using Simulink Matlab. The LSSVMR model is 
designed by using the algorithm that has been 
discussed in [10]. Figure 1 shows the proposed speed 
observer scheme.  
 

 
 

Figure 1. The proposed MRAS-LSSVMR observer scheme 

 
The speed observer model shown in Figure 1 

consists of a PMSM model that is connected to the 
load, current and voltage sensors, MRAS observer 
and LSSVMR algorithm as an adaptation mechanism, 
inverter and PMSM speed control. 

 

1. PMSM Model 
PMSM is an electric motor that uses 

permanent magnets to produce a rotating magnetic 
field [2]. MRAS observer design requires PMSM 
parameters in β axis. The PMSM voltage equation in 

the β axis is written as: 
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Where Rs, Ls are stator resistance and stator 

inductance, respectively. Vβ, iβ and Eβ  are stator 
voltages, stator current and back emf voltage of 
PMSM in β axis, respectively . Both stator currents 

and stator voltages  Vβ, iβ  can be obtained from 

three phase parameters by using abc-β  

transformation, that written as : 
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Where x can present the parameters of voltage, 
current, flux, back emf voltage and other PMSM 
parameters. The PMSM model for MRAS observers is 
presented in a state space equation, as shown in 
Figure 2. 

 

 

 

Figure 2. State space model of PMSM 

 

The blocks A and B shown in Figure 2 are matrix of 
the stator coil resistance and the stator coil 
inductance, which are presented by the following 
equation: 
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2. MRAS Observer 

The MRAS observer model for PMSM consists 
of the motor reference model, the motor adaptive 
model and the adaptation mechanism between the 
adaptive parameter and the reference parameter. 
The reference model presents the actual parameters 
of PMSM, while the adaptive model presents the 
motor parameters based on the estimation results of 
the adaptation mechanism [4]. The adaptation of the 
two models to the MRAS observer in terms of PMSM 
back emf voltage. Figure 3 shows the MRAS observer 
scheme for determining PMSM speed based on back 
emf voltage. 

The estimated value of PMSM speed and rotor 
position in the MRAS observer are obtained from 
controlling the estimated back emf voltage to be the 
same as the reference back emf voltage. Regulating 
the estimated back emf voltage is done by adjusting 
the estimated stator current through an adaptation 
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mechanism of observer. Adaptation mechanism can 
be done by various control methods, such as the 
Proportional Integral (PI) controller and several 
intelligent control methods [2] 
 

 
 

Figure 3. MRAS observer scheme 

 
Based on Equations (1) and (2), the PMSM 

reference model for MRAS observers can be 
formulated as: 
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Based on the PMSM model in the state space 

equation shown in Figure 2 and based on reference 
model in Equation (5), the adaptive model of PMSM 
for MRAS observer can be written as: 
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  (6) 

 
PMSM rotation speed as MRAS observer 

output is derived from the rotor position, which is 
obtained from the estimated back emf voltage using 
an adaptation mechanism. The estimated rotation 

speed r  and the estimated rotor position e of the 
MRAS observer output can be formulated by :  
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The adaptation mechanism of observer MRAS 

is proposed using LSSVMR, as shown in Figure 4.The 
LSSVMR input is the reference current error and the 
estimated current from the adaptive model, while 
the output is the estimated back voltage emf which 
will determine the estimated PMSM speed based on 
Equation (7) and (8). The estimated current in the 
adaptive model is determined by the value of the 
motor voltage in the reference model and the value 
of the back voltage emf from the LSSVMR output. 
When the estimated current in the adaptive model is 
the same as the current in the reference model, the 

back voltage emf estimated by the LSSVMR will be 
the same as the emf back voltage in the reference 
model. In this condition, the estimated motor speed 
from the MRAS observer will be the same as the 
actual motor speed. Therefore, the validity of the 
motor speed observer results in MRAS is largely 
determined by the reliability of the adaptation 
mechanism in determining the estimated back 
voltage emf parameter, where this value will affect 
the estimated motor speed and the estimated 
current in the adaptive model. 

 

 
Gambar 4. The adaptation mechanism of MRAS observer 

based on LSSVMR 

 
3. Least Squares Support Vector Machine 

Regression 
Least Squares Support Vector Machine 

(LSSVM) is one of the learning machines with 
supervised learning methods that have global 
optimal characteristics [9]. LSSVM is an extension of 
the standard SVM. The difference between LSSVM 
and SVM is the optimization technique used. 
Standard SVM solves optimization problems with 
quadratic programming, while in LSSVM 
optimization problems are solved using linear 
equations, so it is faster in training data. LSSVM can 
be used for continuous data using LSSVM Regression 
(LSSVMR) or discrete data using LSSVM Classifier 
(LSSVMC) [10]. In this paper, LSSVMR was chosen, 
because the MRAS observer data to be processed was 
continuous.  

The LSSVMR algorithm works by mapping 
nonlinear functions using linear functions to a higher 
dimensional space. If the LSSVM is used to train data 
with input x, output y  and a sample number n, then 
the LSSVMR regression function can be written 
formulated as: 

 

( , ) ( )
T

f x w w x b         (9) 
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Where w is the weight, b is the LSSVMR bias and (x) 
is the function used to map the input data of LSSVMR 
to a higher dimensional space (feature space), so it is 
expected that the nonlinear data in the input 
LSSVMR will be linear in the feature space. Equation 
(9) can be solved by an optimization function to find 
the minimum value of weight and bias. The LSSVMR 
optimization function can be written as : 
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Where e is the slack variable and  is the regulator 
parameter. The LSSVMR optimization function in 

equation (10) can be solved by Lagrange 
multiplication, which is formulated by the following 
equation:  
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Where  is the lagrange multiplication parameter. 
The optimal conditions in the Lagrange equation 
above can be solved by finding the minimum value 

of weight, bias and slack parameters and the 
optimum value of the Lagrange multiplication 
parameter. This can be resolved under the provisions 
of Karush Kuhn Tucker (KKT), which can be written 
as follows: 
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If the weight and slack variables are 

eliminated, equation (13) can be formed into the 
following linear equation: 
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Where k(x, xi) is the kernel function. There are 
several methods that can be used to solve the kernel 
function. In this paper, the kernel function is solved 
by using the radial basis function method, which is 

formulated by: 
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After solving the kernel function problem, 

then set : 
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If A is symmetric, then equation (14) can be solved 
by: 
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After the lagrange multiplication parameters and 
bias values are obtained through equations (18) and 
(19), then by substituting the weight parameters in 
equation (9) into equation (13) and using the Mercer 
condition in equation ((15), the LSSVMR regression 
function which is presented in equation (9) can be 

rewritten as follows: 
 

  
1

, ( ) ( , )
n

x i

x

f x w y x k x x b


      (20) 

 
Based on equation (20) it can be concluded 

that the validity of the LSSVMR algorithm is 
determined by kernel parameters and bias. This 

parameter can be obtained through offline 
supervised training. After the kernel parameters and 
bias are obtained, then the LSSVMR algorithm is 
ready to be used for the online MRAS observer. 
 

RESULTS AND DISCUSSION  

The proposed MRAS observer for PMSM was 
validated through a simulation with Matlab 
software. The MRAS observer is applied to the PMSM 
model with a power rating 2.2 kW, pole number 10, 

permanent magnetic flux 0.175 Wb, stator resistance 
0.2 Ohm and stator inductance 8.3 mH.  

The simulation was carried out in two stages, 
namely the offline LSSVMR training stage to obtain 
both kernel and bias parameters and the online stage 
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to test the MRAS observer model with the LSSVMR 
adaptation mechanism. 

LSSVMR offline training is carried out with 
four inputs and two outputs, as shown in Figure 4. 

The LSSVMR input is the reference current error in β 

axis and the estimated current in β axis, while the 

LSSVMR output is the back emf voltage in β axis. The 
LSSVMR model used is the LSSVMR algorithm which 

has been discussed in [10]. The LSSVMR algorithm is 
trained with 54 000 data samples.  

LSSVMR algorithm training is carried out by 
using the radial basis kernel function. The results of 
this offline training have provided the best kernel 
functions with values (262588417,163; 0,010325). 

Figure 5 shows the back emf voltage from the 
LSSVMR training results. Figure 5 (a) shows that the 
estimated back emf voltage from the LSSVMR 
algorithm is in accordance with the target value of 
the LSSVMR training. The LSSVMR training results 
only provide a maximum error of 0.0025 volts, as 

shown in Figure 5(b).  
These results indicate that the performance of 

the LSSVMR algorithm is very good in estimating the 
back emf voltage based on the current value as the 
input of the LSSVMR. These results also indicate that 

the LSSVMR algorithm is ready to be tested online as 
an adaptation mechanism for the MRAS observer. 

 

 
(a) 

 
(b) 

 
Gambar 5. The result of LSSVMR training. (a) back emf 

voltage, (b) error of back emf voltage.  

 
The PMSM rotor position can be obtained 

based on the estimated back emf voltage by using 
equation (7). Figure 6 shows the estimated value of 
the PMSM rotor position based on calculation results. 

Figure 6 shows that the estimated value of PMSM 
rotor position is close to the actual value. This results 
shows that the adaptation mechanism of MRAS 
observer by using LSSVMR algorithm has succeeded 
determining the estimated back emf voltage based 

on current parameters in the reference PMSM model 
and the adaptive PMSM model, so that the estimated 
PMSM rotor position can be close to the actual PMSM 
rotor position value. 
 

 
 

Figure 6. Rotor position 

 
Based on the estimated PMSM rotor position, 

the estimated PMSM rotaion speed as the MRAS 

observer output can be calculated by using Equation 
(8). Figure 7 shows the estimated PMSM rotation 
speed based on the calculation results. 
 

 
(a) 

 
(b) 

 
Figure 7. MRAS observer output. (a) rotor speed (b) rotor 

speed error  

 

Figure 7(a) shows that the estimated PMSM 
rotation speed from the MRAS observer has 
approached the same as the actual value. The 
maximum error of the PMSM rotation speed from the 
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LSSVMR training results is only 2.5 rpm, as shown in 
Figure 7(b). These results indicate that the MRAS 
observer designed using LSSVMR as an adaptation 
mechanism has successfully identified the rotor 
speed according to the actual rotor speed. 

After the LSSVMR training for MRAS observers 
is complete, then the MRAS observers are 
implemented to the model of PMSM rotation speed 
control, as shown in Figure 8. This motor speed 
control system is designed using the Field Oriented 
Control (FOC) method with a constant 

electromagnetic torque angle strategy. In this 
method, the PMSM rotation speed is regulated by 
controlling the q-axis current of stator, while the d-
axis current of stator is kept constant at one value. 
The q-axis stator current regulation is implemented 
using a Proportional Integral (PI) method. The 

estimated rotation speed from the MRAS observer is 
used as the rotation speed feedback for FOC. The 
rotation PMSM speed is controlled according to the 
desired reference rotor speed value, as shown in 
Figure 8. 

 

 
 

Figure 8. MRAS observer scheme of motor speed control 

 
The proposed MRAS observer based on 

LSSVMR algorithm is validated through simulation 

on the model of PMSM rotation speed control.The 
simulation was carried out  with load variation from 
5 N.m in the initial conditions, then the PMSM  load 
increased to 7 N.m at 0.8 seconds, as shown by the 
mechanical torque graph in Figure 9. 
 

 
 

Figure 9. Mechanical torque 

 
The test is done by varying the PMSM speed 

through the reference speed setting on the control 
system. The PMSM reference speed is set at 380 rpm 
in the initial conditions, then increases to 540 rpm at 
0.8 seconds, as shown by the rotation speed graph in 
Figure 10(a). 

The simulation results show that the PMSM 

speed control design with the PI controller-based 
FOC method using the MRAS observer as the motor 
speed estimator has successfully controlled the 
speed according to the reference speed, as shown by 
the rotation graph in Figure 10(a). The estimated 
rotation speed from the MRAS observer that 

presented the actual rotor speed has approached the 
same as the reference rotor speed. The proposed 
PMSM speed control system based on MRAS 
observer only gives a maximum speed error of 3.7 
rpm at transient conditions and close to zero at 
steady state, as shown the rotor speed graph in 

Figure 10(b). 
 

 
(a) 

 
(b) 

 
Figure 10. Simulation results. (a) rotor speed, (b) rotor 

speed error 
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The success of the PMSM rotation speed 
control system to regulating the rotation speed is 
inseparable from the success of the MRAS observer 
in identifying the rotor speed, so that the designed 
control system can work properly. The validity of the 
MRAS observer cannot be separated from the 

reliability of the LSSVMR algorithm in identifying the 
back voltage emf, so that the PMSM parameters in 
both the reference PMSM model and the adaptive 
PMSM model in the MRAS observer have nearly the 
same value. This makes the estimated rotation speed 
from the output of MRAS observer follow the actual 

rotor speed value from PMSM. Figure 11 shows the 
performance of the MRAS observer based on the 
LSSVMR algorithm as an adaptation mechanism in 
the rotation speed control model. 
 

 
(a) 

 
(b) 

Figure 11. MRAS observer performances. (a) back emf 
voltage (b) rotor position 

 

Figure 11(a) shows the estimated value of back 
emf voltage from LSSVMR algorithm. The waveform 

of the estimated back emf voltage has produced the 
estimated PMSM rotor position, as shown in Figure 
11(b). The derivative of the estimated rotor position 
give the estimated rotation speed, as shown in Figure 
10(a), where the estimated rotation speed value has 
approached the same as the reference speed value. 

These results indicate that the MRAS observer 
designed with the LSSVMR algorithm as an 
adaptation mechanism has successfully identified 
the PMSM rotation speed in all conditions. This 
makes the proposed PMSM rotation speed control by 

using FOC method provide excellent results in 
controlling the rotor speed in accordance with the 
reference speed set in the control system. 

 

CONCLUSION 

The motor speed observer is designed to 
identify motor speed without using a speed sensor. 

This paper proposes an MRAS observer to identify 
the PMSM speed. The reliability of the MRAS 
observer is determined by the adaptation 
mechanism used. To improve the reliability of the 
MRAS observer, the LSSVMR algorithm was designed 
as an adaptation mechanism for the MRAS observer. 

The MRAS observer based on the LSSVMR algorithm 
is implemented in the PMSM speed control system. 
The PMSM speed control system is designed using 
the PI controller-based FOC method. The simulation 
results show that the proposed MRAS observer with 
the LSSVMR algorithm as an adaptation mechanism 

has successfully identified the motor speed under 
varying speed and load conditions. The proposed 
MRAS observer only produces a maximum speed 
error of 3.7 rpm in transient conditions and close to 
zero at steady state. This shows that the MRAS 
observer based on the LSSVMR provides excellent 

performance in identifying the PMSM rotor speed. 
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