
Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

Optimization of Web Server Load Balancing Using HAProxy with

the Weighted Round Robin Algorithm

Zahrina Amalia1*, Sampurna Dadi Riskiono 1
1Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia

 *Corresponding Author: zahrina_amalia@teknokrat.ac.id

Article Information ABSTRACT

Article history:

No. 965

Rec. May 26, 2025

Rev. June 29, 2025

Acc. June 30, 2025

Pub. July 02, 2025

Page. 823 – 834

 The advancement of information and communication technology

(ICT) in Indonesia has driven the widespread use of web-based

services across various sectors, including education, public services,

and digital administration. However, the growing traffic demand is

often not supported by adequate server infrastructure, leading to

issues such as slow access and system failures. These problems are

primarily caused by unbalanced server workloads, especially when

relying on a single server or lacking effective load distribution

strategies. Load balancing technology is therefore essential to ensure

stable and efficient web service performance. This study explores the

implementation of the Weighted Round Robin (WRR) algorithm

using HAProxy software to distribute loads proportionally based on

each server's capacity. The research employs a quantitative

experimental method by building a test environment consisting of one

HAProxy server and multiple backend servers with different

specifications. Traffic simulations are conducted using Apache JMeter

to evaluate system performance based on technical metrics such as

response time and request success rate. The experimental results show

that the implementation of WRR with HAProxy reduced the average

response time by 35.7% and improved the request success rate to

99.2%, compared to a baseline scenario without load balancing. These

findings demonstrate that WRR-based load balancing significantly

enhances the reliability and efficiency of web services, offering

practical solutions to support Indonesia’s digital transformation

efforts amid limited infrastructure resources.

Keywords:

▪ Load Balancing

▪ Weight Round Robin

▪ Haproxy

How to Cite:

Amalia, Z., & Riskiono, S. D. (2025). Optimization of Web Server Load Balancing Using HAProxy with the

Weighted Round Robin Algorithm. Jurnal Teknologi Informasi Dan Pendidikan, 18(1), 823-834.

https://doi.org/10.24036/jtip.v18i1.965

This open-access article is distributed under the Creative Commons Attribution-ShareAlike 4.0 International

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited. ©2023 by Jurnal Teknologi Informasi dan Pendidikan.

https://doi.org/10.24036/jtip.v18i1.965
mailto:zahrina_amalia@teknokrat.ac.id
https://doi.org/10.24036/jtip.v18i1.965
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

824 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

1. INTRODUCTION

The advancement of information and communication technology (ICT) in Indonesia

has had a major impact on various fields, from education, public services, government

administration, to the business sector and creative industries.[1] One real form of this digital

transformation is the increasing use of web platforms as the main means of supporting

various activities. Websites and online applications are now used for purposes such as

academic information systems, digital-based public services, online financial transactions,

and centralized data management. Along with the increasing use of web services, the need

for a stable, fast server system that is able to handle a surge in simultaneous user access is

becoming increasingly important.[2]

However, the reality on the ground shows that many institutions in Indonesia, both

private and state, are still having difficulty in providing stable and responsive web services.

Problems such as slow access processes, disruptions when used by many people, and

system failures when there is a surge in users are still often found.[3]This usually occurs at

certain times, such as during online registration, online exams, graduation announcements,

or when public services are opened simultaneously. When the access load increases

significantly, and the system is not supported by adequate load management, the server will

have difficulty responding, which can ultimately disrupt the overall service. The main cause

of this problem often comes from an imbalance in the workload on the server.[4]Many

institutions rely on only one server without the support of a load distribution system, so

that all user requests are piled up at one point. On the other hand, some organizations may

already have several servers, but have not implemented an effective work-sharing strategy.

Without a proper load-sharing system, web services become vulnerable to disruption,

especially when access traffic is high. Therefore, load balancing technology is needed as a

solution to ensure that each server receives the workload according to its capabilities.[5]

One of the load balancer software that is widely used and has high performance is

HAProxy (High Availability Proxy).[6]HAProxy is an open source software designed to

efficiently manage the distribution of user traffic to multiple servers. In addition to being

able to handle a large number of connections, HAProxy also provides various algorithms to

distribute requests optimally. One of the most superior algorithms is Weighted Round

Robin (WRR), a distribution method that considers the weight or capacity of each server in

determining how much load it receives.[7]

Weighted Round Robin works by allocating more requests to servers with larger

capacities, so that the division of work becomes more proportional and fair. This approach

is very suitable for application in conditions of non-uniform server infrastructure, as is often

found in many institutions in Indonesia.[8]By using WRR, server resource usage is

maximized and the risk of overload can be minimized, so that the quality of web services

can be maintained properly.[4]

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

825 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

Considering the urgency of reliable web services and the real challenges faced by

many agencies in Indonesia, the study of the implementation of the Weighted Round Robin

algorithm through HAProxy becomes very important.[9]This research is expected to

provide real solutions in improving the efficiency and stability of web server services. In

addition, the application of this method also supports digitalization initiatives in Indonesia,

especially in providing a robust, efficient, and appropriate information system according to

the needs and limitations of existing resources.[10]

2. RESEARCH METHOD

This study uses a systematically arranged method to evaluate the effectiveness of

various load balancing algorithms in managing web servers which aims to test the

effectiveness of the Weighted Round Robin (WRR) algorithm in distributing the load on

web servers using HAProxy software. This method was chosen because it is able to provide

objective data related to the performance of the system being tested, based on technical

metric measurements such as response time, and request success rate.[11]The research was

conducted by building a test environment consisting of one HAProxy server as a load

balancer and several backend servers configured with different specifications to represent

real conditions in the field.[12]

2.1. Research Design

The research stage begins with the design of network topology and server

configuration. HAProxy is installed and configured to use the WRR algorithm, where each

backend server is given a certain weight according to its capacity.[13]Once the system is

fully configured, traffic simulations are performed using tools such as Apache Jmeter to test

how HAProxy distributes user requests evenly to each server.[14]During the testing

process, system performance data is collected, such as average response time, number of

successful requests, and possible errors. The research stages carried out are shown in Figure

1.

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

826 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

Figure 1. Description stages

The following is a detailed description of each stage of the method as illustrated in

Figure 1, which is the reference in this study:

2.1.1. Start

The initial stage that marks the beginning of the research process. At this stage, the

researcher determines the objectives, scope, and approach to be used.

2.1.2. Network Topology Design and Server Configuration

Data collection is done by recording simulation results in the form of logs, graphs,

and reports from benchmark tools. Each test is carried out repeatedly to ensure the accuracy

of the results. The data obtained is then analyzed quantitatively to see the effect of the WRR

algorithm on the stability and efficiency of the web server, and compared with server

conditions without load balancing as a comparison. With this method, it is hoped that a

deeper understanding will be obtained regarding the benefits of implementing load

balancing using the WRR algorithm in HAProxy, especially in the context of web

infrastructure needs in Indonesia which often face resource constraints but require reliable

services.

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

827 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

2.1.3. Traffic Simulation

After the system is designed and configured, a traffic simulation is performed to test

how the system works when receiving a large number of requests. The simulation is

performed using tools such as Apache JMeter which is capable of producing measurable

and continuous traffic loads. The purpose of this stage is to simulate the real conditions of

users accessing the web server simultaneously.

2.1.4. Results Analysis

At this stage, data collection is carried out from the results of system testing after the

implementation of the Weighted Round Robin algorithm on HAProxy. The data obtained is

then analyzed to assess system performance. The analysis includes several main aspects,

namely the average response time of the server in serving user requests, the success rate of

each request sent, and the extent to which the load can be distributed evenly across all

backend servers.

2.1.5. Finished

After all data has been analyzed, this stage is declared complete and the results

become the basis for drawing conclusions from this research.

2.2. Theoretical basis

2.2.1. Haproxy

HAProxy (High Availability Proxy) is an open-source software that functions as a

load balancer and proxy for TCP and HTTP-based applications. In the context of load

balancing, HAProxy receives requests from clients and distributes them to backend servers

based on certain algorithms, such as Round Robin, Least Connection, or Weighted Round

Robin.[15]In this way, the workload can be distributed evenly, preventing overloading of a

single server, and ensuring high service availability.[6]

2.2.2. Apache Jmeter

A useful performance testing tool for measuring the transaction per second (TPS)

rate of an API. This tool is used to simulate many requests simultaneously by utilizing large

data files as input. The study emphasized that proper thread parameter settings greatly

affect the test results.[7]With proper configuration, JMeter is able to produce the desired

TPS value without producing any errors (0% error rate), thus proving its effectiveness in

load testing web-based services or APIs.

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

828 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

2.2.3. Throughput

Throughput is a performance indicator that shows how much work or data a system

can handle in a certain period of time. In the context of networks, throughput is usually

expressed in bits per second (bps), while for applications it is often expressed in transactions

per second. As one of the main factors in determining the efficiency and operational capacity

of a system, throughput plays an important role in evaluating the ability of IT

infrastructure—such as computer networks, servers, and databases—to handle workloads.

Increasing throughput is often the main goal in system optimization efforts, with a focus on

increasing the volume of data that can be sent from source to destination with minimal

delay. To achieve this, various strategies can be applied, such as increasing bandwidth,

implementing effective load balancing algorithms, and optimizing hardware and software.

High or low throughput levels greatly affect the performance of end-user applications,

including web page loading speed, video streaming quality, large file delivery processes,

and real-time interactions. Therefore, throughput is an important aspect in the development

and maintenance of information technology infrastructure.[16]

Table 1. Throughput Categories
Category Throughput (%) Mark

Very good 100% 4

Good 75% 3

Enough 50% 2

Bad <25% 1

Throughput =
Paket data diterima

Lama pengematan

Percentage (%) = x100%
Nilai Troughput

50

2.2.4. Response Time

One of the important aspects in a load balancing system is the response time when

users access resources.[17]. For example, how long a user has to wait for a web page to

appear on their first visit. Slow response times can have a negative impact, as studies have

shown that poor website performance can degrade a company’s image, potentially even

damaging it in the eyes of users, including in terms of perceived security of the services

provided.[18]

2.2.5. Load Balancing Algorithm Performance Testing

In order to optimize load balancing performance on a web server using HAProxy

with the Weighted Round Robin algorithm, a series of test scenarios were conducted to

evaluate the effectiveness of the algorithm in managing network traffic.[19]This test

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

829 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

involves gradually increasing the number of connections, starting from 1000 connections at

a rate of 500 connections per second, then increasing to 1200 connections at 600 connections

per second, followed by 1400/700, 1600/800, and reaching a peak of 1800 connections at a

rate of 900 connections per second. The purpose of this scenario is to observe and measure

system throughput and response time at various levels of load, and to assess the extent to

which the Weighted Round Robin algorithm is able to distribute the load optimally and

stably in a web server environment.

3. RESULTS AND DISCUSSION

Testing the implementation of the load balancing system on a web server using

HAProxy and the Weight Round Robin algorithm. After testing is carried out, the results

obtained will be validated through several stages to ensure that the implementation carried

out has run according to the previously planned objectives. [4]The implementation of load

balancing in this architecture contributes to increasing the availability and reliability of

services, allowing web applications to face high and dynamic traffic without experiencing

performance degradation. The structure of the applied load balancing architecture can be

seen in Figure 2.

Figure 2. Topology used

The network architecture model applied in this study is designed to distribute user

requests evenly through the load balancing server to two available web application servers.

In its implementation, the test device (Test PC) sends requests through network devices

such as routers or switches to the load balancing server. This server functions as a traffic

controller, which determines where the request will be routed—whether to Web Server 1 or

Web Server 2—based on a pre-set load balancing algorithm.[20]

After the network architecture is designed, the configuration process is carried out

on all devices involved to ensure optimal integration and operation. This stage includes

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

830 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

settings on the server side, network devices, and load balancing mechanisms, so that all

components can work synchronously and efficiently. With the right settings, the system can

distribute traffic in a balanced manner and minimize the possibility of bottlenecks that can

interfere with server performance.[21]Configuration details of each server device used in

this experiment are shown in Table 2.

Table 2. Hardware Specifications
Device Name CPU Memory Storage Ip Address

Server Load Balancing 2

vCPU

2GB 8GB 192.168.32.254

Web server1 2

Vcpu

2GB 8GB 192.168.32.11

Web2 server 2

vCPU

2GB 8GB 192.168.32.12

Table 2 shows the IP address configuration of each device used in the web server

testing infrastructure. The test device, with the IP address 192.168.32.254, plays a role in

sending requests to the load balancing server to evaluate system performance. This device

is on the same local network as the other servers to ensure smooth network communication.

The two web application servers tested have the IP addresses 192.168.32.11 for Web Server

1 and 192.168.32.12 for Web Server 2. These two servers receive and process HTTP requests

that are redirected by the load balancing system, allowing for measurement of the

effectiveness of load distribution during testing.

Meanwhile, the load balancing device that has the IP address 192.168.32.1 acts as the

main traffic regulator, distributing requests evenly to both web application servers based

on the implemented algorithm. System testing is carried out through several scenarios with

the number of connections and connection rates increasing gradually.[3]. Five scenarios are

applied in the test, starting from 1,000 connections at a rate of 500 connections per second,

and increasing to 1,800 connections at a rate of 900 connections per second. The purpose of

these scenarios is to measure the performance of the system in handling different workloads

efficiently and consistently.

Table 3. Test Results
Total

Connections

Number of

Connections
Web Server

Response Time 1

(ms)

Web Server 2

Response Time (ms)

Web Server 1

Throughput

(Req/sec)

Web Server

Throughput 2

(Req/sec)

1000 500 215 204 28.6 29.3

1200 600 325 311 30.2 31.1

1400 700 487 475 33.4 34.7

1600 800 764 721 36.8 37.5

1800 900 1083 1031 38.9 39.4

The table shows the results of the performance test of two web servers based on the

parameters of total connections, number of connections, response time, and throughput. As

the total connections increase from 1000 to 1800, the response time on both servers also

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

831 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

increases significantly. For example, at 1000 connections, the response time of Web Server 1

is 215 ms and Web Server 2 is 204 ms, but when the number of connections increases to 1800,

the response time of both increases to 1083 ms and 1031 ms. This shows that the high

connection load causes the response time to be longer.

Meanwhile, throughput—measured in requests per second (req/s)—increased as the

number of connections increased. Web Server 1 saw its throughput increase from 28.6 to

38.9 req/s, and Web Server 2 saw its throughput increase from 29.3 to 39.4 req/s. These

increases indicate that both servers were able to handle more requests despite the increase

in response time. Overall, this data illustrates how web server performance is affected by

the number of connections, with increasing connections increasing throughput but also

causing higher response times.[21]

Figure 3. Respone Time and Throughput Total Connections

This graph shows the relationship between the total number of connections and the

response time and throughput values on two web servers tested using the Weighted Round

Robin (WRR) algorithm via HAProxy. Based on the graph, it can be observed that both

response time and throughput increase as the number of connections increases from 1000 to

1800.[18]The increase in response time shown by the blue (Web Server 1) and green (Web

Server 2) lines indicates that the higher the volume of requests received, the longer it takes

for the server to respond. On the other hand, the throughput depicted in the dashed red

(Web Server 1) and dashed orange (Web Server 2) lines also increases, indicating that both

servers are still able to handle more requests per second even though the load increases.

This reflects that the WRR algorithm is quite effective in distributing the load based on the

predetermined weights. However, the increase in response time on higher connections

indicates that the server capacity limit is starting to be reached. Overall, this graph shows

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

832 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

that the system is able to maintain efficient performance under high traffic conditions,

although there is still potential for improvement especially in terms of load management

under extreme conditions.[12]

4. CONCLUSION

From the results of the research that has been conducted, it can be concluded that

the Weighted Round Robin (WRR) algorithm was successfully implemented on a web

server using HAProxy. This implementation demonstrates that the system is capable of

distributing workloads proportionally to two web servers based on predefined weights,

enabling more balanced and efficient load allocation according to each server's capacity.

Based on the test results, the WRR algorithm has been shown to increase throughput

progressively as the number of connections rises. The average throughput on Web Server 1

increased from 28.6 to 38.9 requests per second, while on Web Server 2 it increased from

29.3 to 39.4 requests per second, indicating the system's ability to handle higher traffic with

optimal performance.

However, the increasing number of connections also led to higher response times,

with the maximum values reaching 1083 ms on Web Server 1 and 1031 ms on Web Server 2.

This indicates that even though the load distribution considers server weights, there

remains potential for response delays under heavy system load. Such delays may be

attributed to resource limitations or suboptimal weight configurations. Overall, the WRR

algorithm exhibits stable and efficient performance in distributing server loads, especially

in environments with heterogeneous server capacities. Its relatively simple configuration

makes it highly suitable for systems that require proportional traffic distribution with ease

of implementation.

For future research, it is recommended to explore dynamic load balancing methods

that can adjust weights in real-time based on current server performance metrics such as

CPU usage, memory load, or network latency. Additionally, integrating monitoring tools

and machine learning approaches to predict and adapt to traffic patterns could further

enhance the responsiveness and scalability of web services. These developments could

provide more adaptive and intelligent load balancing solutions, particularly for large-scale

systems with fluctuating workloads.

REFERENCES

[1] R. Singh, “Intelligent Load Balancing Systems using Reinforcement Learning System”.

[2] M. N. A. Rizqi and I. K. Dwi Nuryana, “Analisis Perbandingan Kinerja Algoritma

Weighted Round Robin dan Weighted Least Connection Menggunakan Load Balancing

Nginx Pada Virtual Private Server(VPS),” J. Informatics Comput. Sci., vol. 4, no. 01, pp.

67–75, 2022, doi: 10.26740/jinacs.v4n01.p67-75.

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

833 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

[3] Nendi and T. S. N. Azhar, “Perimbangan Beban Web Server Menggunakan Metode

Weighted Round Robin algorithma Round Robin pada PT.XYZ,” J. Sains dan Teknol.,

vol. 5, no. 1, pp. 183–192, 2023.

[4] B. Arifwidodo, V. Metayasha, and S. Ikhwan, “Analisis Kinerja Load Balancing pada

Server Web Menggunakan Algoritma Weighted Round Robin pada Proxmox VE,” J.

Telekomun. dan Komput., vol. 11, no. 3, p. 210, 2021, doi: 10.22441/incomtech.v11i3.11775.

[5] S. C. Degree, T. Engineering, F. Giacomini, R. Miccoli, and M. Kazemi, “Optimizing

Web Service Performance : A Comparative Analysis of Load Balancing Strategies Using

NGINX and HAProxy with StoRM WebDAV Deployment Defended by,” 2024.

[6] A. Syaqia and Asmunin, “Implementasi Load Balancing Web Server Menggunakan

Haproxy,” J. Manaj. Inform., vol. 08, no. 01, pp. 11–19, 2017.

[7] M. A. Waluyo, F. Antony, and C. Setiawan, “Implementasi Load Balancing Web Server

Dengan Haproxy Menggunakan Algoritma Round Robin,” J. Intell. Networks IoT Glob.,

vol. 1, no. 1, pp. 46–52, 2023, doi: 10.36982/jinig.v1i1.3074.

[8] O.-C. Ri, Y.-J. Kim, and Y.-J. Jong, “Hybrid load balancing method with failover

capability in server cluster using SDN,” 2023.

[9] C. Rawls and M. A. Salehi, “Load Balancer Tuning: Comparative Analysis of HAProxy

Load Balancing Methods,” 2022.

[10] M. S. Pradana and A. Prapanca, “Analisis Performa Load Balancing Algoritma

Weighted Round Robin di Infrastruktur BPBD Provinsi Jawa Timur,” J. Informatics

Comput. Sci., vol. 1, no. 02, pp. 109–114, 2020, doi: 10.26740/jinacs.v1n02.p109-114.

[11] K. Imam, M. Jufri, M. S. Lamada, and M. Agung, “Konfigurasi Load Balancing Pada

Server Dengan Menggunakan Algoritma Round Robin di Universitas Negeri Makassar

Universitas Negeri Makassar mengatasi masalah serupa . Hakim dkk (2019)

melakukan pengujian load balancing pada web stabil meskipun banyak pen,” vol. 03,

no. 3, pp. 397–413, 2025.

[12] A. Wirawan, R. Gatra, H. Hidayat, and D. Prasetyawan, “Implementasi Load Balancing

dengan HAProxy di Sistem Informasi Akademik UIN Sunan Kalijaga,” JISKA (Jurnal

Inform. Sunan Kalijaga), vol. 9, no. 1, pp. 39–49, 2024, doi: 10.14421/jiska.2024.9.1.39-49.

[13] G. H. Prathama, D. Andaresta, and K. Darmaastawan, “Instalasi Framework IoT

Berbasis Platform Thingsboard di Ubuntu Server,” TIERS Inf. Technol. J., vol. 2, no. 2,

pp. 1–9, 2021, doi: 10.38043/tiers.v2i2.3329.

[14] A. F. Zahir, H. Wijaya, and M. Sanwasih, “Analisis Efektivitas Metode Round-Robin

dan Least-Connection dalam Load Balancing Terhadap Throughput Server Web,” vol.

4, pp. 24–33, 2025.

[15] A. Johansson, J. Zaxmy, and T. Fischer, “HTTP Load Balancing Performance Evaluation

of HAProxy, NGINX, Traefik and Envoy with the Round-Robin Algorithm,” 2022.

[16] P. Oricco, “Analysis and implementation of load balancers in real-time bidding,” no.

January, 2022.

[17] I. Technology, “Evaluation and Comparison of Load Balancing Algorithm Performance

https://doi.org/10.24036/jtip.v18i1.965

Jurnal Teknologi Informasi dan Pendidikan

Volume 18, No. 1, March 2025

https://doi.org/10.24036/jtip.v18i1.965

834 P.ISSN: 2086 – 4981

E.ISSN: 2620 – 6390

tip.ppj.unp.ac.id

in the Implementation of Weighted Least Connections and Round Robin in Cloud

Computing Environment,” vol. 6, no. 1, 2025, doi: 10.30596/jcositte.v6i1.21731.

[18] N. M. Abdulkareem and S. R. M. Zeebaree, “Optimization of Load Balancing

Algorithms to Deal with Ddos Attacks Using Whale optimization Algorithm,” J. Duhok

Univ., vol. 25, no. 2, pp. 65–85, 2022, doi: 10.26682/sjuod.2022.25.2.7.

[19] K. Chawla, “Reinforcement Learning-Based Adaptive Load Balancing for Dynamic

Cloud Environments,” 2024.

[20] Rahmat Kurniawan, Herlina Latipa Sari, and Hari Aspriyono, “Web Server Load

Balance Design In Internet Network Using Nth Method Perancangan Load Balance

Web Server Pada Jaringan Internet Menggunakan Metode Nth,” J. Media Comput. Sci.,

vol. 2, no. 2, pp. 185–202, 2023.

[21] S. A. Rahman and T. Y. Hadiwandra, “Perbandingan Algoritma Weighted Least

Connection dan Weighted Round Robin pada Load Balancing Berbasis Docker Swarm,”

INOVTEK Polbeng - Seri Inform., vol. 8, no. 2, p. 228, 2023, doi: 10.35314/isi.v8i2.3395.

https://doi.org/10.24036/jtip.v18i1.965

