Potential of Robust Regression Methods in Clock Skew Measurement
Abstract
Clock skew, defined as the difference in clock rates between digital devices, serves as a unique and stable fingerprint for device identification and authentication, particularly in distributed network environments. Traditional clock skew estimation techniques, such as linear regression, are effective under stable conditions but often fail in the presence of data disturbances, such as latency, jitter, and asymmetric delays, which introduce outliers. This study explores the application of robust regression methods to enhance the accuracy and stability of clock skew estimation under such conditions. Three robust techniques are comparatively analyzed: Least Median of Squares (LMedS), Random Sample Consensus (RANSAC), and S-Estimators. LMedS offers high resistance to outliers by minimizing the median of squared residuals, though it is computationally demanding for large datasets. RANSAC achieves a practical balance between robustness and efficiency through iterative model fitting and inlier maximization, while S-Estimators provide strong statistical resistance to both outliers and high-leverage points, albeit with increased implementation complexity. The comparative evaluation considers key parameters such as estimation accuracy, computational cost, and robustness to anomalies. Results indicate that RANSAC is generally preferred for clock skew measurement in distributed systems due to its efficient performance and explicit outlier detection capabilities. However, LMedS and S-Estimators remain valuable in scenarios with more complex anomaly structures or higher noise levels. This study contributes to the selection of appropriate robust regression methods for reliable clock skew estimation in dynamic and error-prone network environments.
References
Azmir, A. A., Wirastuti, N. M. A. E. D., & Saputra, K. O. (2022). Review methods for clock skew measurement . Matrix : Jurnal Manajemen Teknologi Dan Informatika, 12(3), 117–122. https://doi.org/10.31940/matrix.v12i3.117-122.
Aditya, I. G. A. A. P., Saputra, K. O., & Wirastuti, N. M. A. E. D. (2022). Metode Potensial Untuk Menghitung Clock Skew. Journal of Computer Science and Informatics Engineering (J-Cosine), 6(2), 142-149.
Putra Sastra, N., Oka Saputra, K., & Made Wiharta, D. (2021). Coexisting Parallelogram Method to Handle Jump Point on Hough Transform-based Clock Skew Measurement. Journal of Communications Software and Systems, 17(4), 297-304.
Sastra, N. P., Saputra, K. O., & Teng, W. C. (2025). Offsets Reconstruction Method for Clock Skew Measurement Over High-Jitter Communication. SN Computer Science, 6(5), 404.
Chen, K., Chen, X., & Gao, X. (2022, February). An anti-outlier robust clock compensated algorithm for wireless network. In Journal of Physics: Conference Series (Vol. 2189, No. 1, p. 012022). IOP Publishing.
D. M. Khan, A. Yaqoob, S. Zubair, M. A. Khan, Z. Ahmad, and O. A. Alamri, "Applications of robust regression techniques: An econometric approach," Mathematical Problems in Engineering, vol. 2021, no. 1, p. 6525079, 2021.
SETYOWATI, E., AKBARITA, R., & ROBBY, R. R. (2021). Perbandingan Regresi Robust Metode Least Trimmed Square (Lts) dan Metode Estimasi-S pada Produksi Padi di Kabupaten Blitar. Jurnal Matematika UNAND, 10(3), 329-341.
De Brabanter, K., & De Brabanter, J. (2021). Robustness by Reweighting for Kernel Estimators: An Overview. Statistical Science, 36(4), 578-594.
Cai, Q., Li, X., & Wu, Y. (2024). Linear Relative Pose Estimation Founded on Pose-only Imaging Geometry. arXiv preprint arXiv:2401.13357.
C. Li, X. Li, T. Li, Q. Meng and W. Yu, "LMedS-Based Power Regression: An Optimal and Automatic Method of Radiometric Intercalibration for DMSP-OLS NTL Imagery," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 2046-2057, 2021, doi: 10.1109/JSTARS.2021.3051800
Mulyawan, B., Jovianto, N., Hendryli, J., & Herwindiati, D. E. (2020, July). Land mapping with least median of squares regression using landsat imagery: a case study Jakarta and sorrounding area. In IOP Conference Series: Materials Science and Engineering (Vol. 852, No. 1, p. 012024). IOP Publishing.
Ratri, A. P., Susanti, Y., & Slamet, I. (2021). The Factors Affecting Soybean Production in Indonesia Using Robust Regression with Least Median of Squares (LMS) Estimation. Nusantara Science and Technology Proceedings, 70-78.
Ren,Y. (2024). Performance Comparison of RANSAC and Other Model Estimation Methods in Panoramic Image Mosaic. Applied and Computational Engineering,105,82-90.
Stanković, L., Brajović, M., Stanković, I., Lerga, J., & Daković, M. (2021). RANSAC-based signal denoising using compressive sensing. Circuits, systems, and signal processing, 40, 3907-3928.
Elashry, A., Sluis, B., & Toth, C. (2021). Improving ransac feature matching based on geometric relation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 321-327.
Zheng, J., Peng, W., Wang, Y., & Zhai, B. (2021). Accelerated RANSAC for accurate image registration in aerial video surveillance. IEEE Access, 9, 36775-36790.
S. Y. Cao, R. Zhang, L. Luo, B. Yu, Z. Sheng, J. Li, and H. L. Shen, "Recurrent homography estimation using homography-guided image warping and focus transformer," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023, pp. 9833–9842
Rousseeuw, P., and V. Yohai. 1984. Robust regression by means of S-estimators. In Robust and nonlinear time series analysis, ed. J. Franke, W. Hardle, and D. Martin, Lecture notes in statistics, vol. 26, 256–72. Berlin and New York: Springer Verlag.
Kehinde, A. O. O., Adesanya, K. K., & Onafowokan, M. A. (2023). Performance of the ordinary least squares estimator method of estimating regression parameters and some robust regression methods. International Journal Of Health Records & Information Management (Ijhrim), 6(1).
A. Fitrianto and S. H. Xin, "Comparisons between robust regression approaches in the presence of outliers and high leverage points," BAREKENG: J. Ilmu Mat. dan Terapan, vol. 16, no. 1, pp. 243–252, 2022.
Djara, V. A. D., Andriyana, Y., & Noviyanti, L. (2022). Modelling the prevalence of stunting toddlers using spatial autoregressive with instrument variable and S-estimator. Commun. Math. Biol. Neurosci., 2022.
Fadhlan, M. F., & Sensuse, D. I. (2022). Knowledge Repository Design to Improve Knowledge Management Process Capabilities: A Systematic Literature Review. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(2), 246-251.
Alyosef, A. A., Elias, C., & Nürnberger, A. (2021, January). Localization and transformation reconstruction of image regions: An extended congruent triangles approach. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 3884-3891). IEEE.
Dewayanti, A. A. (2021). Robust Estimation in Regression Model for Handling Outlier and Heteroscedasticity. Jurnal Matematika Thales, 3(1).
Lee, S. H., & Civera, J. (2022). RODIAN: Robustified Median. arXiv preprint arXiv:2206.02570.
Khotimah, K., Sadik, K., & Kurnia, A. (2021, March). Robust multi-stage method (MM) and least median square (LMS) evaluation on handling outlier for multiple regression. In Journal of Physics: Conference Series (Vol. 1863, No. 1, p. 012033). IOP Publishing.
Veríssimo, A., Lopes, M.B., Carrasquinha, E., Vinga, S. (2020). Random Sample Consensus for the Robust Identification of Outliers in Cancer Data. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science, vol 12313. Springer, Cham. https://doi.org/10.1007/978-3-030-63061-4_11.
Ortiz, A., Ortiz, E., Miñana, J.J., Valero, Ó. (2021). On the Use of Fuzzy Metrics for Robust Model Estimation: A RANSAC-Based Approach. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_14.
TA, S. (2023). Comparative Study on Robust Estimators and Evaluating their Performance in Multiple Regression. Aligarh Journal of Statistics, 43.
Rahayu, D. A., Nursholihah, U. F., Suryaputra, G., & Surono, S. (2023). Comparasion of the m, mm and s estimator in robust regression analysis on indonesian literacy index data 2018. EKSAKTA: Journal of Sciences and Data Analysis, 11-22.
Hakan Savaş Sazak & Nalan Mutlu (2023) Comparison of the robust methods in the general linear regression model, Communications in Statistics - Simulation and Computation, 52:7, 3163-3182, DOI: 10.1080/03610918.2021.1928196.
S. Pradhan, S. Kundu, S. K. Ghosh, S. Chakraborty, M. Alam, S. S. Thakur, and B. K. S. Roy, "S-Estimator-Based Linear Robust Static State Estimation of Power Systems Considering Uncertain Noise Characteristics," in Proc. Int. Symp. Sustainable Energy and Technological Advancements, Singapore, Feb. 2024, pp. 243–261, Springer Nature Singapore.
G. Canavire-Bacarreza, L. Castro Peñarrieta, and D. Ugarte Ontiveros, "Outliers in semi-parametric estimation of treatment effects," Econometrics, vol. 9, no. 2, p. 19, 2021.
Copyright (c) 2025 Jurnal Teknologi Informasi dan Pendidikan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.