Application of Bagging Ensemble Learning on Naïve Bayes Algorithm to Predict Coronary Heart Disease

Authors

  • I Gusti Agung Satria Nugraha Universitas Pendidikan Ganesha
  • I Gede Aris Gunadi Universitas Pendidikan Ganesha
  • Luh Joni Erawati Dewi Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.24036/jtip.v18i2.981

Keywords:

Coronary Heart Disease, Data Mining, Naive Bayes, Bagging, Confusion Matrix

Abstract

Cardiovascular health is vital, with heart disease, particularly Coronary Heart Disease (CHD), being a significant health concern in Indonesia. The 2023 Indonesian Health Survey reported 877,531 cases of heart disease. Traditional CHD diagnosis is often costly and invasive. Therefore, machine learning-based classification has emerged as a promising alternative for enhancing the accuracy and efficiency of detection. This study aims to predict CHD using a hybrid approach combining the Naïve Bayes algorithm with the Bagging ensemble method. Naïve Bayes was selected for its computational efficiency and effectiveness with high-dimensional data, while Bagging was employed to mitigate its inherent weaknesses by reducing variance and increasing prediction stability. The CRISP-DM methodology was applied to a secondary dataset of 462 rows from Kaggle. The research process included data preprocessing, method implementation, and evaluation using a confusion matrix. Results show the Bagging method with n=2 estimators achieved optimal performance, with 76.34% accuracy, 65.00% precision, and an f1-score of 70.27%. This study demonstrates that ensemble techniques can effectively improve the accuracy and stability of CHD prediction models, offering a reliable and low-cost solution for initial screening.

References

B. K. P. Kesehatan, “Survei Kesehatan Indonesia (SKI) 2023,” 2023.

E. Erdania, M. Faizal, and R. B. Anggraini, “Faktor – Faktor Yang Berhubungan Dengan Kejadian Penyakit Jantung Koroner (PJK) Di RSUD Dr. (H.C.) Ir. SOEKARNO PROVINSI BANGKA BELITUNG TAHUN 2022,” J. Keperawatan, vol. 12, no. 1, pp. 17–25, Jun. 2023, doi: 10.47560/kep.v12i1.472.

R. T. Wahyuni, E. Witcahyo, and Y. T. Herawati, “Hubungan Karakteristik Pasien, Prosedur, dan Penyakit Penyerta Dengan Biaya Langsung Medis Pada Pasien Rawat Inap Jantung Koroner,” J. Ekon. Kesehat. Indones., vol. 8, no. 1, p. 1, Jul. 2023, doi: 10.7454/eki.v8i1.6240.

M. M. Ahsan, S. A. Luna, and Z. Siddique, “Machine-Learning-Based Disease Diagnosis: A Comprehensive Review,” Healthcare, vol. 10, no. 3, p. 541, Mar. 2022, doi: 10.3390/healthcare10030541.

S. Yang, “A Study of Heart Disease Diagnosis Using Machine Learning and Data Mining,” J. Clin. Med. Res., vol. 5, no. 4, p. 565, Dec. 2024, doi: 10.32629/jcmr.v5i4.3135.

A. F. Riany and G. Testiana, “Penerapan Data Mining untuk Klasifikasi Penyakit Jantung Koroner Menggunakan Algoritma Naïve Bayes,” MDP Student Conf., vol. 2, no. 1, pp. 297–305, Apr. 2023, doi: 10.35957/mdp-sc.v2i1.4388.

I. M. A. A. D. Putra, I. M. G. Sunarya, and I. G. A. Gunadi, “Perbandingan Algoritma Naive Bayes Berbasis Feature Selection Gain Ratio dengan Naive Bayes Kovensional dalam Prediksi Komplikasi Hipertensi,” JTIM J. Teknol. Inf. dan Multimed., vol. 6, no. 1, pp. 37–49, Apr. 2024, doi: 10.35746/jtim.v6i1.488.

A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 504–510, Jun. 2021, doi: 10.29207/resti.v5i3.3067.

H. Mukaromah and Wasilah, “Komparasi Teknik Bagging Dan Adaboost Pada Decision Tree Dan Naive Bayes Untuk Prediksi Stroke,” J. Penelit. Ilmu dan Teknol. Komput., vol. 16, no. 1, pp. 167–180, 2024.

F. Kamalov, A. Elnagar, and H. H. Leung, “Ensemble Learning with Resampling for Imbalanced Data,” 2021, pp. 564–578. doi: 10.1007/978-3-030-84529-2_48.

A. Ridwan, “Penerapan Teknik Bagging Pada Algoritma Naive Bayes Dan Algoritma C4.5 Untuk Mengatasi Ketidakseimbangan Kelas,” J. Bisnis Digit. dan Sist. Inf., vol. 1, no. 1, pp. 63–70, 2020.

N. D. Saputri, K. Khalid, and D. Rolliawati, “Komparasi Penerapan Metode Bagging dan Adaboost pada Algoritma C4.5 untuk Prediksi Penyakit Stroke,” J. Sist. Inf., vol. 11, no. 3, pp. 567–577, 2022, doi: https://doi.org/10.32520/stmsi.v11i3.

G. N. Masacgi and M. S. Rohman, “Optimasi Model Algoritma Klasifikasi menggunakan Metode Bagging pada Stunting Balita,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 455–464, Dec. 2023, doi: 10.29408/edumatic.v7i2.23812.

M. A. Wiratama and W. M. Pradnya, “Optimasi Algoritma Data Mining Menggunakan Backward Elimination untuk Klasifikasi Penyakit Diabetes,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 1, p. 1, Apr. 2022, doi: 10.23887/janapati.v11i1.45282.

I. G. Hendrayana, D. G. H. Divayana, and M. W. A. Kesiman, “Komparasi Metode Svm, K-Nn Dan Nbc Pada Analisis Sentimen,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 1, pp. 191–198, Jan. 2023, doi: 10.35870/jimik.v4i1.157.

A. Rianti, N. W. A. Majid, and A. Fauzi, “CRISP-DM: Metodologi Proyek Data Science,” in Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB), 2023, pp. 107–114.

D. B. Saputra, V. Atina, and F. E. Nastiti, “Penerapan Model Crisp-Dm Pada Prediksi Nasabah Kredit Menggunakan Algoritma Random Forest,” IDEALIS Indones. J. Inf. Syst., vol. 7, no. 2, pp. 240–247, Jul. 2024, doi: 10.36080/idealis.v7i2.3244.

D. Larassati, A. Zaidiah, and S. Afrizal, “Sistem Prediksi Penyakit Jantung Koroner Menggunakan Metode Naive Bayes,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 533–546, May 2022, doi: 10.29100/jipi.v7i2.2842.

P. A. Sihotang and D. Sitanggang, “Penerapan Metode Algoritma C4.5 Dan Naive Bayes Untuk Prediksi Penyakit Jantung,” J. Tek. Inf. dan Komput., vol. 7, no. 2, p. 899, Dec. 2024, doi: 10.37600/tekinkom.v7i2.1535.

A. E. Karrar and R. Elarabi, “An Intelligent Machine Learning-Based System for Predicting Heart Disease Using Mixed Feature Creation Technique,” in Journal of Physics: Conference Series, 2023, pp. 353–367. doi: 10.1007/978-3-031-36258-3_31.

Z. Khoshgoftar, M. Babaee, A. K. Rouzbahani, and M. Kalantarion, “Educational data mining in medical education: A five-level approach,” J. Educ. Health Promot., vol. 14, no. 1, Jan. 2025, doi: 10.4103/jehp.jehp_1339_23.

O. B. Akanbi, “Prediction of Heart Disease Risk among Patients in Federal Medical Centre, Abeokuta Using Naïve Bayes,” Asian J. Probab. Stat., vol. 26, no. 10, pp. 46–63, Sep. 2024, doi: 10.9734/ajpas/2024/v26i10658.

K. S. Y. Pande, D. G. H. Divayana, and G. Indrawan, “Comparative analysis of naïve bayes and knn on prediction of forex price movements for gbp/usd currency at time frame daily,” in The 3rd International Conference on Vocational Education and Technology (IConVET), 2021.

G. Battineni, G. G. Sagaro, N. Chinatalapudi, and F. Amenta, “Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis,” J. Pers. Med., vol. 10, no. 2, p. 21, Mar. 2020, doi: 10.3390/jpm10020021.

Downloads

Published

2025-08-19

How to Cite

[1]
I. G. A. S. Nugraha, I. G. A. Gunadi, and L. J. E. . Dewi, “Application of Bagging Ensemble Learning on Naïve Bayes Algorithm to Predict Coronary Heart Disease”, J. teknol. inf. pendidik., vol. 18, no. 2, pp. 943–954, Aug. 2025.