Implementation of the Crisp-Dm Methodology and Naive Bayes Algorithm on A Raw Material Requirement Prediction System to Reduce Food Waste (Case Study: Adamsafee Bakery, Resto, & Cafe)

Authors

  • Adam Fathul Hakim Universitas Muria Kudus
  • Yudie Irawan Universitas Muria Kudus
  • R. Rhoedy Setiawan Universitas Muria Kudus

DOI:

https://doi.org/10.24036/jtip.v18i2.990

Keywords:

▪ Naive Bayes ▪ Requirement Prediction ▪ Raw Materials ▪ Food Waste ▪ Information System

Abstract

Accurate forecasting of raw material requirements is critical for culinary businesses to reduce food waste and optimize costs. In the case of Adamsafee Bakery, Resto, & Cafe, high levels of waste have been caused by reliance on intuition-based forecasting, resulting in both overstocking and understocking. This study develops a web-based predictive system using the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology and the Naive Bayes algorithm to classify demand patterns into three categories: high, medium, and low. Historical sales data were transformed into categorical attributes and processed through the Naive Bayes model to generate demand predictions. The system was evaluated by comparing predicted sales with actual outcomes. Results show that the model achieved an accuracy of 98.7% and a mean absolute percentage error (MAPE) of 1.31%, indicating that the forecasts closely aligned with real sales performance. These findings demonstrate the effectiveness of the Naive Bayes algorithm in supporting data-driven decision-making for inventory management. This data-driven approach replaces subjective decision-making, enabling management to optimize inventory, minimize food waste, and enhance operational efficiency and business sustainability, while also offering a baseline for future research using alternative machine learning algorithms.

References

H. R. Santoso and S. Yulina, “Rancang Bangun Aplikasi Food Waste Management pada Usaha Food and Beverages,” J. Komput. Terap., vol. 9, no. 1, pp. 101–110, 2023, doi: 10.35143/jkt.v9i1.5840.

L. G. Wijayanti, A. Suparno, and A. A. Setyawan, “Sistem Informasi Pengelolaan Bahan Baku Guna Meningkatkan Efektivitas Laporan Persediaan Produk Pada Pt Wijaya Karunia Megah,” J. Elektro Luceat, pp. 1–13, 2022, doi: 10.32531/jelekn.v8i2.480.

D. Puspita and Si. Aminah, “Implementasi Naive Bayes Untuk Sistem Prediksi Mahasiswa Berprestasi,” J. Ilm. Teknosains, vol. 8, no. 2, pp. 15–19, 2022, doi: 10.26877/jitek.v8i2/Nov.13784.

W. I. Sabilla, M. A. P. Perkasa, and D. W. Wibowo, “Sistem Pendeteksi Kualitas Daging Segar dengan Metode Naive Bayes,” J. Inform. Polinema, vol. 10, no. 2, pp. 279–284, 2024, doi: 10.33795/jip.v10i2.5006.

W. Astuti, I. Isharijadi, and E. E. Yusdita, “Sistem Pengelolaan Bahan Baku Berbasis Just in Time (Jit) Pada Umkm ‘Aneka Keripik Kartini,’” J. Bisnis Terap., vol. 6, no. 2, pp. 130–140, 2022, doi: 10.24123/jbt.v6i2.5138.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

M. Asfi and N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,” J. Nas. Inform. dan Teknol. Jar., vol. 5, pp. 45–50, 2020, doi: 10.30743/infotekjar.v5i1.2536.

V. R. A. Hidayat, “Sistem Prediksi Kemenangan Hero Mobile Legends Menggunakan Metode Naive Bayes,” JIKO (Jurnal Inform. dan Komputer), vol. 8, no. 1, p. 100, 2024, doi: 10.26798/jiko.v8i1.1120.

R. Winurputra and D. E. Ratnawati, “Peramalan Penjualan Produk Menggunakan Extreme Gradient Boosting (XGBoost) dan Kerangka Kerja CRISP-DM untuk Pengoptimalan Manajemen Persediaan (Studi Kasus: UB Mart),” J. Teknol. Inf. dan Ilmu Komput., vol. 12, no. 2, pp. 417–428, 2025, doi: 10.25126/jtiik.2025129451.

Narayana Sakti Aji, Fauzan Natsir, and Siti Istianah, “Penentuan Penjualan Barang Berdasarkan Pengelompokan Produk dengan K-Means Clustering Metode CRISP-DM Pada CV Sembako Dina,” J. Zetroem, vol. 5, no. 2, pp. 119–126, 2023, doi: 10.36526/ztr.v5i2.3041.

Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1551, 2023, doi: 10.30865/mib.v7i3.6461.

S. Santiastry, A. Asriyanik, and W. Apriandari, “Penerapan Algoritma Naive Bayes Dan Metode Crisp-Dm Dalam Prediksi Hasil Tes Kemampuan Bahasa Inggris Mahasiswa,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 5, pp. 10432–10439, 2024, doi: 10.36040/jati.v8i5.11069.

D. Kurniawan and M. Yasir, “Optimization Sentimen Analysis using CRISP-DM and Naive Bayes Methods Implemented on Social Media,” Cybersp. J. Pendidik. Teknol. Inf., vol. 6, no. 2, p. 74, 2022, doi: 10.22373/cj.v6i2.12793.

I. Pramana, I. W. Sudiarsa, and ..., “Penerapan Algoritma Naive Bayes Untuk Prediksi Penjualan Produk Terlaris Pada CV Akusara Jaya Abadi,” JATISI (Jurnal Tek. …, vol. 10, no. 4, pp. 518–534, 2023, doi: 10.35957/jatisi.v10i4.6498.

T. Wurijanto, H. B. Setiawan, and A. B. Tjandrarini, “Penerapan Model CRISP-DM pada Prediksi Nasabah Kredit yang Berisiko Menggunakan Algoritma Support Vector Machine,” J. Ilm. Scroll (Jendela Teknol. Informasi), vol. 10, no. 1, pp. 1–6, 2022, doi: 10.30640/ejournalscroll.v10i1.291.

Zulkifli, Asmawati.S, and Arnita Irianti, “Penerapan Algoritma Naive Bayes dalam Memprediksi Persediaan Bahan Mebel (Studi Kasus Mebel Usaha Bersama Palipi Soreang),” J. Comput. Inf. Syst. ( J-CIS ), vol. 5, no. 1, pp. 57–64, 2022, doi: 10.31605/jcis.v5i1.1360.

M. Taufik Hidayat, N. Suarna, and N. Rahaningsih, “Implementasi Algoritma Naïve Bayes Untuk Prediksi Persediaan Barang Pt. Dilmoni Citra Mebel Indonesia,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 693–699, 2023, doi: 10.36040/jati.v7i1.6310.

Downloads

Published

2025-08-30

How to Cite

[1]
A. F. Hakim, Y. Irawan, and R. R. Setiawan, “Implementation of the Crisp-Dm Methodology and Naive Bayes Algorithm on A Raw Material Requirement Prediction System to Reduce Food Waste (Case Study: Adamsafee Bakery, Resto, & Cafe)”, J. teknol. inf. pendidik., vol. 18, no. 2, pp. 968–983, Aug. 2025.