Web-Based Dental Caries Detection Using a Convolutional Neural Network and OpenCV
DOI:
https://doi.org/10.24036/jtip.v19i1.1059Keywords:
Dental Caries, Convolutional Neural Network, Transfer Learning, Image Classification, Web ApplicationAbstract
Early detection of dental caries presents a significant challenge, particularly in regions with limited access to healthcare services. While many AI models focus on binary classification, real-world applications must handle irrelevant inputs to be robust. This study develops and evaluates a web-based system using a Convolutional Neural Network (CNN) for a three-class dental image classification task: 'Caries', 'No Caries', and 'Not a Tooth'. The method employs transfer learning with the MobileNetV3 Small architecture, trained on a custom augmented dataset of 5,811 images. The model was implemented into an accessible web application using the Flask framework and OpenCV library, supporting both image upload and real-time detection. On the test set, the model achieved an overall accuracy of 93%. It demonstrated exceptional performance in rejecting irrelevant images and high reliability in identifying caries. This study presents a practical and robust tool for initial dental screening, highlighting the importance of a dedicated 'non-target' class for building trustworthy real-world AI applications in tele-dentistry.
References
Zang, X., Luo, C., Qiao, B., Jin, N., Zhao, Y., & Zhang, H. (2022). A deep learning model using convolutional neural networks for caries detection and recognition with endoscopes. Annals of Translational Medicine, 10(24), 1369–1369.
Dashti, M., Londono, J., Ghasemi, S., Tabatabaei, S., Hashemi, S., Baghaei, K., Palma, P. J., & Khurshid, Z. (2024). Evaluation of accuracy of deep learning and conventional neural network algorithms in detection of dental implant type using intraoral radiographic images: A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 133(1), 137–146.
Widodo, C. E., Adi, K., & Gernowo, R. (2020). Medical image processing using python and open cv. Journal of Physics: Conference Series, 1524(1), 4–8.
Oztekin, F., Katar, O., Sadak, F., Yildirim, M., Cakar, H., Aydogan, M., Ozpolat, Z., Talo Yildirim, T., Yildirim, O., Faust, O., & Acharya, U. R. (2023). An Explainable Deep Learning Model to Prediction Dental Caries Using Panoramic Radiograph Images. Diagnostics, 13(2).
Park, E. Y., Cho, H., Kang, S., Jeong, S., & Kim, E. K. (2022). Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health, 22(1), 1–9.
Sharma, D., Kudva, V., Patil, V., Kudva, A., & Bhat, R. S. (2022). A Convolutional Neural Network Based Deep Learning Algorithm for Identification of Oral Precancerous and Cancerous Lesion and Differentiation from Normal Mucosa: A Retrospective Study. Engineered Science, 18, 278–287.
Saini, D., Jain, R., & Thakur, A. (2021). Dental Caries early detection using Convolutional Neural Network for Tele dentistry. 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, 958–963.
Siji Rani, S., Garine, S., Janardhana, P. H., Reddy, L. L. P., Kumar, P. J. V., & Dwaz, C. G. (2024). Deep Learning-based Cavity Detection in Diverse Intraoral Images: A Web-based Tool for Accessible Dental Care. Procedia Computer Science, 233, 882–891.
Garg, A., Lu, J., & Maji, A. (2023). Towards Earlier Detection of Oral Diseases On Smartphones Using Oral and Dental RGB Images. ArXiv Preprint.
Rouhbakhshmeghrazi, A., & Alizadeh, G. (2024). Detecting dental caries with convolutional neural networks using color images. ArXiv Preprint.
Alomar, K., Aysel, H. I., & Cai, X. (2023). Data Augmentation in Classification and Segmentation: A Survey and New Strategies. Journal of Imaging, 9(2).
Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... & Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1314-1324).
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Lee, J. H., Kim, D. H., & Jeong, S. N. (2018). Diagnosis of dental caries on intraoral camera images using a deep convolutional neural network. Journal of Dentistry, 77, 99-104.
Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries Detection on Intraoral Images Using Artificial Intelligence. Journal of Dental Research. 2021;101(2):158-165. doi:10.1177/00220345211032524
Nooraldaim, A., & Saed, A. (2023). Artificial Intelligence for Caries and Tooth Detection in Dental Imaging: A Review. Indonesian Journal of Computer Science, 12(6). https://doi.org/10.33022/ijcs.v12i6.3522
Cantu-Paz, F. J. G., & Lizárraga-Liceaga, M. (2021). Dental caries segmentation in bitewing radiographs using deep learning. Applied Sciences, 11(16), 7578.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknologi Informasi dan Pendidikan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













.png)













