PENINGKATAN KUALITAS CITRA SIDIK JARI DENGAN ALGORITMA MINUTIAE EXTRACTION DAN LEARNING VECTOR QUANTIZATION
Abstract
Fingerprint recognition system aims to identify someone. The main obstacle in recognizing a person's fingerprints is that the image has a low quality. The quality is caused by the type of oily, dry, dirty skin and the type of fingerprint scanner used. For this reason, an increase was made with the aim of improving fingerprint images as the main factor determining the level of accuracy of fingerprint image recognition results. In order for fingerprint images to be easily interpreted by humans and machines, it is necessary to improve quality by clarifying the fingerprint line. This study aims to improve the quality of fingerprint images with the Minutiae Extraction algorithm and the Learning Vector Quantization (LVQ) method as a test. This test is carried out using 4 images as training in each class. The total number of classes in this test is 10 classes with each class consisting of 10 images. In testing 75 fingerprint image data obtained an accuracy rate of 83.3333%.
References
S. Guglani and E.P.S. Bhullar, “A New False Minutia Removal Based Fingerprint Identification Technique”, International Journal of Advanced Research in Computer Science (IJARCS), vol. 6, no. 6, pp. 17-19, 2015.
N. Yanti, F.Z. Rachman, N. Jamal, E. Purwanto, Fachrurozy, “Jaringan Syaraf Tiruan Untuk Pengenalan Citra Sidik Jari Pada Smart”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol 5, no. 5, pp. 597-604, 2018.
R. Bansal, P. Sehgal and P. Bedi. “Minutiae Extraction from fingerprint Image : a Review”. International Journal of Computer Science (IJCSI), vol. 5, no. 3, pp. 74-85, 2011.
J. Yang, L. Liu, T. Jiang and Y. Fan, 2003. “A Modified Gabor Filter Design Method For Fingerprint Image Enhancement”, Pattern Recognition Letters, vol. 24, no. 12, pp. 1805-1817, 2003.
S. Chavan, P. Mundada and D. Pal, “Fingerprint Authentication Using Gabor Filter Based Matching Algorithm”, International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India. Feb 04-06, 2015.
N. Kahraman, Z.G.C. Taskiran and M. Taskiran, “Novel Feature Extraction Methodology with Evaluation in Artificial Neural Networks Based Fingerprint Recognition System”, Original scientific paper, vol. 1, no. 1, pp. 112-119, 2018.
L. Weclaw , “ A Minuatiae-Based Matching Algorithms In Fingerprint Recognition Systems”. Journal of Medical Informatics & Technologies, vol. 13 no.1, pp. 65-71, 2009.
E. Afriandi E and Sutikno. “Identifikasi Telapak Tangan Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ)”, Jurnal Informatics Telecomunication and Eletronics (Infotel), vol. 8, no. 2, pp 107-114, 2018.
J. Santony and J. Na`am , ”Infiltrate Object Extraction in X-ray Image by using Math-Morphology”, International Journal on Advanced Science, Engineering and Information Technology (IJASEIT), vol. 6, no. 2, pp 239-244, 2016.
J. Na`am , J. Santony, Yuhandri, Sumijan and G.W. Nurchayo , “Enlarge Medical Image using Line-Column Interpolation (LCI) Method”, International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no.5, pp. 3620-3626, 2018.
R. Wahyudi, O. Soesanto, Muliadi, “Rancang Bangun Aplikasi Pengenalan Pola Sidik Jari”, Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 2 no.1, pp. 74-83, 2015.
I.R. Wijaya, U.N. Wisesty, S.A. Faraby, “Analisis dan Implementasi Metode Gabor Filter dan Support Vector Machine pada Klasifikasi Sidik Jari”, Indonesian Journal of Computing (Indo-JC), vol. 2, no.2, pp. 37-46, 2017.
Copyright (c) 2020 JTIP : Jurnal Teknologi Informasi dan Pendidikan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.