Analysis of Moving Average, Weight Moving Average, Exponential Smoothing in predicting shoe prices

  • Nur Nafi'iyah Informatics, Universitas Islam Lamongan
  • Mohammad Zamrozi Fikri Informatics, Universitas Islam Lamongan
  • Retno Wardhani Informatics, Universitas Islam Lamongan
Keywords: shoe price predictions, MA, WMA, ES

Abstract

Research related to forecasting is growing, starting with simple forecasting based on time or forecasting with certain criteria. Forecasting methods continue to be developed because they produce good models and can predict with high accuracy. The simplest method of forecasting is from the statistical value of the data, namely the average value or what is often called a moving average. Moving average calculates the next time prediction based on the previous time data and moves. The Moving Average (MA) method has several types, including Weight Moving Average (WMA), Autoregressions Moving Average (ARMA), and others. Referring to existing forecasting methods, we try to propose research related to the analysis of the MA, WMA, and Exponential Smoothing (ES) methods in forecasting shoe prices. The purpose of this research is to analyze the three methods in predicting the price of Adidas shoes. The data were taken from the Kaggle dataset and the analysis of the three methods used the MSE (Mean Squared Error) value. The forecasting analysis process uses the statsmodels library in Jupyter Notebooks. The MSE values ​​of the three methods are MA with 2 times 15484.68, MA with 3 times 24829.42, WMA 3 times 14239.74, WMA 4 times 18386.77, and ES 3 times 38349.34, ES 4 times 43102.42. The conclusion of this research is that the lowest MSE value is the best prediction method, namely WMA with 2 times MSE 7268.3.

References

S. Agustian and H. Wibowo, “Perbandingan Metode Moving Average untuk Prediksi Hasil Produksi Kelapa Sawit,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., 2019.

S. Martha, Novianus, and Helmi, “PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI t,” Bul. Ilm. Math. Stat. dan Ter., 2015.

R. A. Siregar and E. Riksakamora, “PEMBANGUNAN APLIKASI BERBASIS WEB UNTUK PERAMALAN HARGA SAHAM DENGAN METODE MOVING AVERAGE, EXPONENTIAL SMOOTHING, DAN ARTIFICIAL NEURAL NETWORK,” J. Tek. ITS, 2016, doi: 10.12962/j23373539.v5i2.17070.

R. Rachman, “Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment,” J. Inform., 2018, doi: 10.31311/ji.v5i2.3309.

R. Y. Hayuningtyas, “Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing,” J. Pilar Nusa Mandiri, 2017.

H. Prapcoyo, “PERAMALAN JUMLAH MAHASISWA MENGGUNAKAN MOVING AVERAGE,” Telematika, 2018, doi: 10.31315/telematika.v15i1.3069.

S. S. Sundari, Susanto, and W. Revianti, “Sistem Peramalan Persediaan Barang Dengan Weight Moving Average Di Toko The Kids 24,” Konf. Nas. Sist. dan Inform., 2015.

I. A. Krismawanti, S. Martha, and N. N. Debataraja, “Pemodelan Autoregressive Fractionally Integrated Moving Average (ARFIMA) dalam Memprediksi Harga Crude Palm Oil (CPO),” vol. 08, no. 4, pp. 721–728, 2019.

A. Nurlifa and S. Kusumadewi, “Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky,” INOVTEK Polbeng - Seri Inform., 2017, doi: 10.35314/isi.v2i1.112.

C. Baktiar, A. Wibowo, and R. Adipranata, “Pembuatan Sistem Peramalan Penjualan Dengan Metode Weighted Moving Average dan Double Exponential Smoothing Pada UD Y,” J. Ilm., 2013.

H. Pradibta and A. U. N. Al Saffa, “PENGEMBANGAN SISTEM INFORMASI PENJUALAN DAN PERAMALAN JUAL BELI MENGGUNAKAN METODE WEIGHTED MOVING AVERAGE (Studi Kasus Toko Emas Maju Sari Kota Malang),” J. Inform. Polinema, 2016, doi: 10.33795/jip.v2i3.72.

N. Hudaningsih et al., “Perbandingan Peramalan Penjualan Produk Aknil Pt . Sunthi Sepuri Mengguanakan Metode Single Moving Average Dan Single Exponential Smooting,” J. JINTEKS, 2020.

U. Devi, “Sistem Informasi Penjualan Barang Pada CV. Sinar Musi Group Palembang Berbasis Web Menerapkan Metode Single Moving Average,” J. Manaj. Inform., 2016.

N. P. L. P. Yanti, I. . M. Tuningrat, and A. A. P. A. S. Wiranatha, “Analisis Peramalan Penjualan Produk Kecap Pada Perusahaan Kecap Manalagi Denpasar Bali,” J. Rekayasa Dan Manaj. Agroindustri, vol. 4, no. 1, pp. 72–81, 2016.

D. M. Efendi and F. Ardhy, “Penerapan Data Mining Untuk Peramalan Penjualan Obat dengan Menggunakan Single Exponential Smoothing di Apotek Hamzah Farma,” Semin. Nas. Teknol. dan Bisnis, 2018.

S. Alfarisi, “Sistem Prediksi Penjualan Gamis Toko QITAZ Menggunakan Metode Single Exponential Smoothing,” JABE (Journal Appl. Bus. Econ., 2017, doi: 10.30998/jabe.v4i1.1908.

N. L. Taqwa, I. K. D. Nuryana, and A. Andriani, “Sistem Prediksi Produksi Padi di Provinsi Jawa Timur Menggunakan Exponential Smoothing Berbasis Web,” Inovate, 2019.

Johara, “Dataset,” Kaggle, 2019. https://www.kaggle.com/joharah/shoesprices (accessed Dec. 08, 2020).

Published
2022-08-27
How to Cite
[1]
N. Nafi’iyah, M. Fikri, and R. Wardhani, “Analysis of Moving Average, Weight Moving Average, Exponential Smoothing in predicting shoe prices”, JTIP, vol. 15, no. 1, pp. 76-84, Aug. 2022.
Abstract viewed = 434 times
PDF downloaded = 294 times