Comparison of Machine Learning Algorithms for Classification of Ultraviolet Index
Abstract
Indonesia is a tropical climate country which has the potential for high intensity of sunlight exposure. Several types of exposure that receives are ultraviolet rays. According to the National Agency for Meteorology, Climatology and Geophysics, it provides information regarding the impact on human activities in an ultraviolet index which has a risk scale. The aim of this research was creating a recommender system based on the ultraviolet index category in providing daily activity advice to users. The methods used the K-nearest Neighbor algorithm and Support Vector Machine with a Collaborative Filtering Model-Based approach that could recommend items based on the results of a model trained to identify input data patterns. The stages carried out in this study included data collection, data pre-processing, data division into test data and train data, dataset testing, analysis of the results of models that had been trained in the accuracy values using the algorithm tested. The results of the confusion matrix calculation produced test evaluations in accuracy values, precision values, and recall values. The comparison of result had the highest performance in K-nearest Neighbor with an accuracy value of 99.69%, a precision value of 99.00%, and a recall value of 96.20%. In research used the Support Vector Machine showed the lowest performance with an accuracy value of 97.91%, a precision value of 93.20%, and a recall value of 86.40%.
References
A. Adzhani, F. Darusman e R. Aryani, “Kajian Efek Radiasi Ultraviolet Terhadap Kulit,” Bandung Conference Series: Pharmacy, vol. 2 no. 2, pp. 106-112, 2022.
A. Addas, M. Ragab, A. Maghrabi, S. M. Abo-Dahab e E. F. El-Nob, “UV Index for Public Health Awareness Based on OMI/NASA Satellite Data at King Abdulaziz University, Saudi Arabia,” Hindawi Advances in Mathematical Physics, pp. 1-11, 2021. https://doi.org/10.1155/2021/2835393.
S. Ristanto, C. Huda e A. F. Kurniawan, “Pengukuran Indeks Ultraviolet Matahari dan Atenuasinya oleh Beberapa Bahan untuk Rekomendasi Waktu Aman Berjemur,” Indonesian Journal of Applied Physics, vol. 11 no. 2, pp. 248-255, 2021. https://jurnal.uns.ac.id/ijap/article/view/52753.
H. OTT, “Kipp Zonen UV A Radiometer,” 7 February 2017. [Online]. Available: https://www.kippzonen.com/Product/426/SUV-A-UVA-Radiometer#.Y8cpAnZBzIX. [Acesso em 18 January 2023].
H. OTT, “Kipp Zonen UV B Radiometer,” 7 February 2017. [Online]. Available: https://www.kippzonen.com/Product/427/SUV-B-UVB-Radiometer#.Y8drT3ZBzIW. [Acesso em 18 January 2023].
S. Subbidang Produksi Informasi Iklim dan Kualitas Udara, “Indeks Sinar Ultraviolet,” BMKG, [Online]. Available: https://www.bmkg.go.id/kualitas-udara/indeks-uv.bmkg. [Acesso em 18 January 2023].
B. Thomas e A. K. John, “Machine Learning Techniques for Recommender Systems – A Comparative Case Analysis,” IOP Conference Series: Materials Science and Engineering, vol. 1085, pp. 1-14, 2020. doi 10.1088/1757-899X/1085/1/012011.
S. Sauda e M. R. Ramadhan, “Implementasi Memory-Based dan Model-Based Collaborative Filtering pada Sistem Rekomendasi Sepeda Gunung,” Syntax Literate: Jurnal Ilmiah Indonesia, vol. 7 no. 6, pp. 7836-7848, 2022. doi http://dx.doi.org/10.36418/syntax-literate.v7i6.7559.
D. Theodorus, S. Defit e G. W. Nurchayo, “Machine Learning Rekomendasi Produk dalam Penjualan Menggunakan Metode Item-Based Collaborative Filtering,” Jurnal Informasi dan Teknologi, vol. 3 no. 4, pp. 202-208, 2021. doi https://doi.org/10.37034/jidt.v3i4.151.
S. Sharda e G. S. Josan, “Machine Learning Based Recommendation System: A Review,” International Journal of Next-Generation Computing, vol. 12, nº 2, pp. 134-144, 2021. doi.org/10.47164/ijngc.v12i2.200.
A. Roihan, P. A. Sunarya e A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang:Review Paper,” Indonesian Journal on Computer and Information Technology, vol. 5 Nomor 1, pp. 75-82, 2020. doi https://doi.org/10.31294/ijcit.v5i1.7951.
S. A. Rajagukguk, “Tinjauan Pustaka Sistematis: Prediksi Prestasi Belajar Peserta Didik dengan Algoritma Pembelajaran Mesin,” Jurnal SNATi, vol. 1 No 1, pp. 22-30, 2021.
A. Tangkelayuk e E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9 No. 2, pp. 1109-1119, 2022.
F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi e J. Akinjobi, “Supervised Machine Learning Algorithms: Classification and Comparison,” International Journal of Computer Trends and Technology (IJCTT), vol. 48 No 3, pp. 128-138, 2017.
A. P. Permana, K. Ainiyah e K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKa, vol. 6 No. 3, pp. 178-188, 2021.
R. Puspita e A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5 No. 4, pp. 646-654, 2020.
J. Cervantesa, F. Garcia-Lamonta, L. Rodríguez-Mazahuab e A. Lopezc, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189-215, 2020.
T. E. Arijaje, T. V. Omotosho, S. A. Akinwumi, O. O. Ometan e O. O. Fashade, “Analysis of Solar Ultraviolet radiation Index over Nigeria, West Africa,” 5th International Conference on Science and Sustainable Development , vol. 993, pp. 1-11, 2022.
A. F. McKinlay e B. L. Diffey, “McKinlay, A.F. and Diffey, B.L. (1987) A Reference Action Spectrum for Ultraviolet Induced Erythema in Human Skin,” CIE Journal, vol. 6, pp. 17-22, 1987.
I. Rasila e U. Ristian, “Implementasi Metode Naive Bayes Classifier pada Sistem Pengklasifikasi Berita Otomatis berbasis Website (Studi Kasus: Berita Lokal Dari Mediamassa Online Kalimantan Barat),” Coding : Jurnal Komputer dan Aplikasi, vol. 7 no. 2 , pp. l 49-60, 2019.
M. Fatchan e H. Sugeng, “Analisa Terpilihnya Tri Rismaharini sebagi Menteri Sosial dengan Pendekatan Algorithma Naïve Bayes,” Journal of Practical Computer Science, vol. 1 no. 2, pp. 50-57, 2021.
S. Uddin, I. Haque, H. Lu, M. A. Moni e E. Gide, “Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction,” Scientific Reports, vol. 12, nº 1, pp. 1-11, 2022.
V. V. Pramansah, D. I. Mulyana e T. Silfia, “Analisis Perbandingan Algoritma SVM Dan KNN Untuk Klasifikasi Anime Bergenre Drama,” Jurnal J-COM (Jurnal Informatika dan Teknologi Komputer) , vol. 03 no. 01 , pp. 49-55, 2022.
Saikin, S. Fadli e M. Ashari, “Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Results,” JISA (Jurnal Informatika dan Sains), vol. 04 no. 01, pp. 22-27, 2021.
N. Arifin, U. Enri e N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine dengan TF-IFD N-Gram untuk Text Classification,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 6 no. 2 , pp. 129-136, 2021 .
Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,” PRISMA Prosiding Seminar Nasional Matematika , vol. 4, pp. 493-499, 2021.
I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis e N. Doulamis, “Multiclass Confusion Matrix Reduction Method and ItsApplication on Net Promoter Score Classification Problem,” technologies, vol. 9, pp. 1-22, 2021.
S. A. A. Kharis, I. Hadi e K. A. Hasanah, “Multiclass Classification of Brain Cancer with Multiple Multiclass Artificial Bee Colony Feature Selection and Support Vector Machine,” Journal of Physics: Conference Series , vol. 1417 , pp. 1-8, 2019.
K. L. Kohsasih e Z. Situmorang, “Analisis Perbandingan Algoritma C4.5 Dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” JURNAL INFORMATIKA, vol. 9 no. 1, pp. 13-17, 2022.
Copyright (c) 2023 Jurnal Teknologi Informasi dan Pendidikan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.