Design of The WBAN in The Mobile Health Monitoring System

  • Muhammad Rizki Ganda Putra Politeknik Negeri Sriwijaya
  • Ade Silvia Handayani Politeknik Negeri Sriwijaya
  • Jon Endri Politeknik Negeri Sriwijaya
Keywords: Health Monitoring, WBAN (Wireless Body Area Network), Blood Pressure, Blood Oxygen Levels, Blood Sugar, Temprature, Heart Rate

Abstract

WBAN (Wireless Body Area Network) technology is used in this study to provide an integrated health monitoring platform. The device utilizes MLX90615 for measuring body temperature, a Blood Pressure Sensor for measuring blood pressure and pulse rate, and a MAX30102 Sensor for measuring blood oxygen and blood glucose levels. The output of this utility is displayed on an OLED screen and is controlled by the NODEMCU ESP8266. The test reveals an accuracy of 94.8%, indicating that the instrument can provide accurate results and has a relatively low error rate on each sensor. Heart Rate Error on Blood Pressure Sensor 0; Spo2 Error on MAX 30102 Sensor 1; and Blood Sugar Error on MAX 30102 Sensor 2.0. Real-time health monitoring that is more accurate and efficient. This device has the potential to be a practical solution for routine health monitoring and provides significant benefits for maintaining health.

References

L. T. Larsen, “Not merely the absence of disease: A genealogy of the WHO’s positive health definition,” Hist. Human Sci., vol. 35, no. 1, pp. 111–131, 2022, doi: 10.1177/0952695121995355.

D. Z. Obidovna and D. S. Sulaymonovich, “Physical activity and its impact on human health and longevity,” Достижения Науки И Образования, no. 2 (82), pp. 120–126, 2022.

H. Metoki et al., “Hypertensive disorders of pregnancy: definition, management, and out-of-office blood pressure measurement,” Hypertens. Res., vol. 45, no. 8, pp. 1298–1309, 2022, doi: 10.1038/s41440-022-00965-6.

L. Duan et al., “Comparing the blood oxygen level–dependent fluctuation power of benign and malignant musculoskeletal tumors using functional magnetic resonance imaging,” Front. Oncol., vol. 12, no. August, pp. 1–10, 2022, doi: 10.3389/fonc.2022.794555.

C. M. Dolson et al., “Wearable Sensor Technology to Predict Core Body Temperature: A Systematic Review,” Sensors, vol. 22, no. 19, pp. 1–16, 2022, doi: 10.3390/s22197639.

R. Men, “Validity of the Polar H10 Sensor for Heart Rate Variability Recreational Men and Women,” 2022.

Y. Cui, H. Zhang, J. Zhu, Z. Liao, S. Wang, and W. Liu, “Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods,” Int. J. Environ. Res. Public Health, vol. 19, no. 7, pp. 1–15, 2022, doi: 10.3390/ijerph19074122.

M. Kariisa et al., “Vital Signs: Drug Overdose Deaths, by Selected Sociodemographic and Social Determinants of Health Characteristics — 25 States and the District of Columbia, 2019–2020,” MMWR Recomm. Reports, vol. 71, no. 29, pp. 940–947, 2022, doi: 10.15585/mmwr.mm7129e2.

S. D. Purnamasari, E. Education, and S. Program, “Design of Gas Detector and Fire Detector Based Internet of Things Using Arduino Uno,” no. 472, pp. 8–14, 2021.

B. Robert and E. B. Brown, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” no. 1, pp. 1–14, 2004.

R. Zain, Sahari, and E. Rahmawati, “Perancang Sistem Pendeteksi Asap Pada Ruangan Pustakaan Menggunakan Sensor MQ-2 dan Tampilan LCD dengan Mikrokontroler ATMega32,” Tek. Inf. Pendidik., vol. 9, no. 3, pp. 18–25, 2016.

Adi Winarno and M. Affandi, “Design and Construction of Smart House Prototype Based Internet of Things (Iot) Using Esp8266,” BEST J. Appl. Electr. Sci. Technol., vol. 4, no. 1, pp. 11–14, 2022, doi: 10.36456/best.vol4.no1.5447.

S. Hassan, E. Mwangi, and P. K. Kihato, “IoT based monitoring system for epileptic patients,” Heliyon, vol. 8, no. 6, p. e09618, 2022, doi: 10.1016/j.heliyon.2022.e09618.

M. Szczerska, “Long-Term Measurement of Physiological Parameters – Child Dataset,” pp. 1–4.

B. Ibrahim and R. Jafari, “Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022, doi: 10.1038/s41598-021-03612-1.

S. M. A. Iqbal, I. Mahgoub, E. Du, M. A. Leavitt, and W. Asghar, “Development of a wearable belt with integrated sensors for measuring multiple physiological parameters related to heart failure,” Sci. Rep., vol. 12, no. 1, pp. 1–13, 2022, doi: 10.1038/s41598-022-23680-1.

A. Gamara and A. Hendryani, “Rancang Bangun Alat Monitor Detak Jantung Dan Suhu Tubuh Berbasis Android,” J. Sehat Mandiri, vol. 14, no. 2, pp. 1–9, 2019, doi: 10.33761/jsm.v14i2.140.

H. Isyanto, A. S. Wahid, and W. Ibrahim, “Desain Alat Monitoring Real Time Suhu Tubuh, Detak Jantung dan Tekanan Darah secara Jarak Jauh melalui Smartphone berbasis Internet of Things Smart Healthcare,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 5, no. 1, pp. 39–48, 2022.

I. Yulia Basri, D. Novaliendry, and I. Maisa Tania, “Design and Development of Inductive Sensor Trainer Based on Arduino and IDE 1.8.19 Software,” J. Teknol. Inf. dan Pendidik., vol. 15, no. 1, 2022, [Online]. Available: https://doi.org/10.24036/tip.v15i1

A. S. Putra, J. N. Nursalim, A. Aribowo, and H. Tjahyadi, “Arduino-Based Vehicle Fuel Theft Detector System,” J. Teknol. Inf. dan Pendidik., vol. 13, no. 2, pp. 55–61, 2020, doi: 10.24036/tip.v13i2.340.

Published
2023-11-23
How to Cite
[1]
M. Putra, A. Handayani, and J. Endri, “Design of The WBAN in The Mobile Health Monitoring System”, JTIP, vol. 16, no. 2, pp. 79-92, Nov. 2023.
Abstract viewed = 86 times
PDF downloaded = 50 times