Capacity Management Strategy for Handling Traffic Load with Dijkstra Algorithm at PT XYZ

  • Najma Syarifa Rahmah Information System
  • Faqih Hamami Universitas Telkom
  • Riska Yanu Fa’rifah Universitas Telkom
Keywords: Network traffic optimization, Network congestion, Capacity management strategy, Dijkstra Algorithm, Quality of Service

Abstract

 In the digital era marked by rapid data growth, network congestion occurs when network capacity cannot handle the transmitted data volume, becoming a significant challenge that impacts the Quality of Service (QoS). This study proposes an effective capacity management strategy, which includes alternative routing, load balancing, and capacity enhancement, involving the optimized Dijkstra Algorithm and a Decision Support System (DSS) to improve QoS. The Dijkstra Algorithm is effective in reducing the load on congested routes and ensuring balanced traffic distribution, which enhances the capacity and reliability of the network. The results indicate a reduction in packet loss from 142.353 to 66.340 packets (or 53,39%) and an increase in the number of packets successfully transmitted from 122.542 to 198.555 packets (or 61,98%). Specific node capacity increases have significantly bolstered data transmission success. This comprehensive strategy not only improves the reliability of data transmission and network performance consistency but also enables the network to adapt to growing demands without degrading performance, confirming the efficacy of capacity management in addressing capacity challenges and improving QoS.

References

I. Andhika, “Analysis of Mobile Banking Acceptance in Indonesia using Extended TAM (Technology Acceptance Model),” Jurnal Teknologi Informasi dan Pendidikan, vol. 16, no. 2, 2023, doi: 10.24036/jtip.v16i2.626.

J. Tan et al., “An efficient information maximization based adaptive congestion control scheme in wireless sensor network,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2915385.

M. H. Homaei, F. Soleimani, S. Shamshirband, A. Mosavi, N. Nabipour, and A. R. Varkonyi-Koczy, “An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2968524.

Y. Guo, Z. Mi, Y. Yang, H. Ma, and M. S. Obaidat, “Efficient Network Resource Preallocation on Demand in Multitenant Cloud Systems,” IEEE Syst J, vol. 13, no. 4, 2019, doi: 10.1109/JSYST.2019.2910276.

K. Kritikos and D. Plexousakis, “Requirements for QoS-based Web service description and discovery,” in IEEE Transactions on Services Computing, 2009. doi: 10.1109/TSC.2009.26.

Z. Hu, X. Wang, and Y. Bie, “Game Theory Based Congestion Control for Routing in Wireless Sensor Networks,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3097942.

Y. Lu, R. Pan, B. Prabhakar, D. Bergamasco, V. Alaria, and A. Baldini, “Congestion control in networks with no congestion drops,” in 44th Annual Allerton Conference on Communication, Control, and Computing 2006, 2006.

J. Wu, Y. Peng, M. Song, M. Cui, and L. Zhang, “Link congestion prediction using machine learning for software-defined-network data plane,” in CITS 2019 - Proceeding of the 2019 International Conference on Computer, Information and Telecommunication Systems, 2019. doi: 10.1109/CITS.2019.8862098.

N. Masinde, S. Bischoff, and K. Graffi, “Capacity Management Protocol for a Structured P2P-based Online Social Network,” in 2020 7th International Conference on Social Network Analysis, Management and Security, SNAMS 2020, 2020. doi: 10.1109/SNAMS52053.2020.9336563.

D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network Slicing,” in Proceedings - IEEE INFOCOM, 2020. doi: 10.1109/INFOCOM41043.2020.9155299.

M. Nakagawa, H. Kawahara, K. Masumoto, T. Matsuda, and K. Matsumura, “Performance Evaluation of Multi-Band Optical Networks Employing Distance-Adaptive Resource Allocation,” in 25th Opto-Electronics and Communications Conference, OECC 2020, 2020. doi: 10.1109/OECC48412.2020.9273660.

Y. Shen, X. Wen, L. Wang, W. Guan, and Z. Lu, “Physical Resource Management Based on Complex Network Theory in 5G Network Slice Trading,” in IEEE Wireless Communications and Networking Conference, WCNC, 2019. doi: 10.1109/WCNC.2019.8885610.

P. Panyahuti, “Validity Test of Motion Graphics Media as A Wide Area Network Learning Media,” Jurnal Teknologi Informasi dan Pendidikan, vol. 15, no. 1, 2022, doi: 10.24036/jtip.v14i3.572.

A. Alyasin, E. I. Abbas, and S. D. Hasan, “An Efficient Optimal Path Finding for Mobile Robot Based on Dijkstra Method,” in 4th Scientific International Conference Najaf, SICN 2019, 2019. doi: 10.1109/SICN47020.2019.9019345.

A. Buzachis, A. Celesti, A. Galletta, J. Wan, and M. Fazio, “Evaluating an Application Aware Distributed Dijkstra Shortest Path Algorithm in Hybrid Cloud/Edge Environments,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, 2022, doi: 10.1109/TSUSC.2021.3071476.

S. Sundarraj, R. V. K. Reddy, M. B. Basam, G. H. Lokesh, F. Flammini, and R. Natarajan, “Route Planning for an Autonomous Robotic Vehicle Employing a Weight-Controlled Particle Swarm-Optimized Dijkstra Algorithm,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3302698.

K. Wei, Y. Gao, W. Zhang, and S. Lin, “A Modified Dijkstra’s Algorithm for Solving the Problem of Finding the Maximum Load Path,” in 2019 IEEE 2nd International Conference on Information and Computer Technologies, ICICT 2019, 2019. doi: 10.1109/INFOCT.2019.8711024.

D. D. Zhu and J. Q. Sun, “A New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3053169.

H. Y. Chang, P. F. Wang, H. C. Chen, Y. Z. Chen, and D. R. Chen, “On the Study of Shortest-path Problem on Coal-transportation Networks using Dijkstra’s Algorithm,” in 2019 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2019, 2019. doi: 10.1109/ICCE-TW46550.2019.8992003.

S. Kim, H. Jin, M. Seo, and D. Har, “Optimal Path Planning of Automated Guided Vehicle using Dijkstra Algorithm under Dynamic Conditions,” in 2019 7th International Conference on Robot Intelligence Technology and Applications, RiTA 2019, 2019. doi: 10.1109/RITAPP.2019.8932804.

F. P. Kamarudin, “Optimizing Classification Algorithms Using Soft Voting: A Case Study on Soil Fertility Dataset,” Jurnal Teknologi Informasi dan Pendidikan, vol. 16, no. 2, pp. 255–268, Dec. 2023, doi: 10.24036/jtip.v16i2.800.

A. G. Anbaran, A. Mohammadi, and A. Abdipour, “Capacity enhancement of Ad Hoc networks using a new single-RF compact beamforming scheme,” IEEE Trans Antennas Propag, vol. 63, no. 11, 2015, doi: 10.1109/TAP.2015.2469092.

M. Purwahid and J. Triloka, “Analisis Quality of Service (QOS) Jaringan Internet Untuk Mendukung Rencana Strategis Infrastruktur Jaringan Komputer Di SMK N I Sukadana,” 2019.

M. F. Khan, E. A. Felemban, S. Qaisar, and S. Ali, “Performance analysis on packet delivery ratio and end-to-end delay of different network topologies in wireless sensor networks (WSNs),” in Proceedings - IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2013, 2013. doi: 10.1109/MSN.2013.74.

A. Kurnia Saleh, H. Peni Agustin Tjahyaningtijas, and L. Rakhmawati, “Quality of Service (QoS) Comparative Analysis of Wireless Network,” 2022.

ETSI, “Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS),” Etsi Tr 101 329 V2.1.1, vol. 1, 2020.

Published
2025-03-19
How to Cite
[1]
N. Rahmah, F. Hamami, and R. Fa’rifah, “Capacity Management Strategy for Handling Traffic Load with Dijkstra Algorithm at PT XYZ”, JTIP, vol. 18, no. 1, pp. 678-696, Mar. 2025.
Abstract viewed = 16 times
PDF downloaded = 9 times