New Student Admission Forecasting Model with Support Vector Machine Method: Case Study of Bali State Polytechnic

  • I Putu Bagus Arya Pradnyana Politeknik Negeri Bali
  • I Putu Oka Wisnawa Politeknik Negeri Bali
  • Ni Nyoman Harini Puspita Politeknik Negeri Bali
Keywords: Peramalan

Abstract

Every educational institution, both formal and non-formal, organizes new student admissions every year. This process requires institutions to improve the quality of education, services, and accreditation, both in terms of student competence, facilities, and infrastructure. Therefore, effective and efficient planning is needed, especially in making strategic decisions. This research aims to forecast the number of new student admissions using the Support Vector Machine (SVM) method. SVM is one of the artificial intelligence techniques known to have a high level of accuracy in data analysis and forecasting. The results showed that the SVM method was able to produce predictions with a low error rate. The test results using Root Mean Square Error (RMSE) show that the Electrical Engineering study program has the best RMSE value of 7.292, making it the study program with the highest level of forecasting accuracy in this study. This finding proves that the SVM method can be effectively implemented in forecasting new student admissions, so that it can help institutions in developing better and data-based admission strategies.

References

A. A. Muhartini, O. Sahroni, S. D. Rahmawati, T. Febrianti, and I. Mahuda, "Analisis Peramalan Jumlah Penerimaan Mahasiswa Baru Dengan Menggunakan Metode Regresi Linear Sederhana," Jurnal Bayesian: Jurnal Ilmiah Statistika dan Ekonometrika, vol. 1, no. 1, pp. 17-23, 2021.

W. Handoko, "Prediksi Jumlah Penerimaan Mahasiswa Baru Dengan Metode Single Exponential Smoothing (Studi Kasus: Amik Royal Kisaran)," JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 5, no. 2, pp. 125-132, 2019.

M. Liu, Z. Cao, J. Zhang, L. Wang, C. Huang, and X. Luo, "Short-term wind speed forecasting based on the Jaya-SVM model," International Journal of Electrical Power & Energy Systems, vol. 121, p. 106056, 2020.

S. Singh and A. Mohapatra, "Data driven day-ahead electrical load forecasting through repeated wavelet transform assisted SVM model," Applied Soft Computing, vol. 111, p. 107730, 2021.

R. Isnaeni, S. Sudarmin, Z. J. V. J. o. S. Rais, I. a. o. Teaching, and Research, "Analisis Support Vector Regression (SVR) dengan Kernel Radial Basis Function (RBF) Untuk Memprediksi Laju Inflasi di Indonesia," vol. 4, no. 1, pp. 30-38, 2022.

N. P. P. Pratama and T. Sukmono, "Forecasting the Number of Blood Demand Using The Support Vector Machine (SVM) Method: Peramalan Jumlah Permintaan Darah Menggunakan Metode Support Vector Machine (SVM)," 2022.

M. R. Rifqi, B. D. Setiawan, and F. A. J. J. P. T. I. d. I. K. Bachtiar, "Support Vector Regression Untuk Peramalan Permintaan Darah: Studi Kasus Unit Transfusi Darah Cabang-PMI Kota Malang," vol. 2, no. 10, pp. 3332-3342, 2018.

I. A. Tarigan, I. P. A. Bayupati, and G. A. A. J. J. T. D. S. K. Putri, "Komparasi model support vector machine dan backpropagation dalam peramalan jumlah wisatawan mancanegara di provinsi Bali," vol. 9, no. 2, pp. 90-95, 2021.

K. Li, G. Zhou, Y. Yang, F. Li, and Z. Jiao, "A novel prediction method for favorable reservoir of oil field based on grey wolf optimizer and twin support vector machine," Journal of Petroleum Science and Engineering, vol. 189, p. 106952, 2020.

Y. Chen, "Mining of instant messaging data in the Internet of Things based on support vector machine," Computer Communications, vol. 154, pp. 278-287, 2020.

W. Zhu, Y. Song, and Y. Xiao, "Support vector machine classifier with huberized pinball loss," Engineering Applications of Artificial Intelligence, vol. 91, p. 103635, 2020.

L. Wen and Y. Cao, "Influencing factors analysis and forecasting of residential energy-related CO2 emissions utilizing optimized support vector machine," Journal of Cleaner Production, vol. 250, p. 119492, 2020.

J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques 3rd Edition Elsevier, 2012.

S. Beheshti, "Mean Square Error Estimation in Thresholding," IEEE, 2011.

S. JJ, "Jaringan Syaraf Tiruan dan PemogramannyaMenggunakan Matlab.," Yogyakarta : Andi, 2005.

Krismadinata , U. Verawardina , N. Jalinus , F. Rizal , Sukardi , P. Sudira , D. Ramadhani , A. L. Lubis , J. Friadi , A. S. R. Arifin , D. Novaliendry , "Blended Learning as Instructional Model in Vocational Education: Literature Review," Universal Journal of Educational Research, Vol. 8, No. 11B, pp. 5801 - 5815, 2020. DOI: 10.13189/ujer.2020.082214.

N. Nafi’iyah, M. Fikri, and R. Wardhani, “Analysis of Moving Average, Weight Moving Average, Exponential Smoothing in predicting shoe prices”, JTIP, vol. 15, no. 1, pp. 76-84, Aug. 2022.

D. Novaliendry. et al, “The Development of Professional Competency Certification Assessment Model for Junior Mobile Programmers”, Int. J. Interact. Mob. Technol., vol. 17, no. 08, pp. pp. 181–196, Apr. 2023.

Elida, D. Novaliendry, N. Ardi, E. M. B. Saari, and N. Dwiyani, “Model Development of Android-Based Learning in Vocational High School”, Int. J. Interact. Mob. Technol., vol. 17, no. 22, pp. pp. 152–159, Nov. 2023.

R. Darwas, R. Rahimullaily, and N. Abdi, “Good Sales Forecasting Information System using Single Exponential Smoothing Method”, JTIP, vol. 14, no. 1, pp. 77-82, Sep. 2021.

Published
2025-04-16
How to Cite
[1]
I. P. Arya Pradnyana, I. P. Wisnawa, and N. N. Puspita, “New Student Admission Forecasting Model with Support Vector Machine Method: Case Study of Bali State Polytechnic”, JTIP, vol. 18, no. 1, pp. 760-772, Apr. 2025.
Abstract viewed = 13 times
PDF downloaded = 10 times